2018, 11(1): 25-42. doi: 10.3934/krm.2018002

A non-relativistic model of plasma physics containing a radiation reaction term

Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany

Received  June 2016 Revised  February 2017 Published  August 2017

While a fully relativistic collisionless plasma is modeled by the Vlasov-Maxwell system a good approximation in the non-relativistic limit is given by the Vlasov-Poisson system. We modify the Vlasov-Poisson system so that damping due to the relativistic effect of radiation reaction is included. We prove existence and uniqueness as well as higher regularity of local classical solutions. Our results also include the higher regularity of classical solutions of the Vlasov-Poisson system depending on the regularity of the initial datum.

Citation: Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic & Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002
References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differental Equations, 25 (1977), 342-364. doi: 10.1016/0022-0396(77)90049-3.

[2]

S. Bauer, Post-Newtonian dynamics at order 1. 5 in the Vlasov-Maxwell system, preprint, arXiv: math-ph/0602031.

[3]

S. Bauer, M. Kunze, The Darwin approximation of the relativistic Vlasov-Maxwell system, Ann. Henri Poincaré, 6 (2005), 283-308. doi: 10.1007/s00023-005-0207-y.

[4]

S. Bauer, M. Kunze, Radiative friction for charges interacting with the radiation field: Classical many-particle systems, in Analysis, Modeling and Simulation of Multiscale Problems, (2006), 531-551. doi: 10.1007/3-540-35657-6_19.

[5]

S. Bauer, M. Kunze, G. Rein, A. D. Rendall, Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation, Comm. Math. Phys., 266 (2008), 267-288. doi: 10.1007/s00220-006-0015-3.

[6]

J. Chen and X. Zhang, Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping Internat. J. Math. 26 (2015), 1550098, 19 pp. doi: 10.1142/S0129167X15500986.

[7]

Z. Chen, X. Zhang, Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy, Commun. Math. Phys., 343 (2016), 851-879. doi: 10.1007/s00220-016-2616-9.

[8]

L. E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc., 83 (1978), 159-165. doi: 10.1017/S0305004100054402.

[9]

J. D. Jackson, Classical Electrodynamics Second edition. John Wiley & Sons, Inc. , New York-London-Sydney, 1975.

[10]

S. Kunimochi, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Lond. A, 116 (1990), 45-78. doi: 10.1017/S0308210500031371.

[11]

M. Kunze, A. D. Rendall, Simplified models of electromagnetic and gravitational radiation damping, Classical Quantum Gravity, 18 (2001), 3573-3587. doi: 10.1088/0264-9381/18/17/311.

[12]

M. Kunze, A. D. Rendall, The Vlasov-Poisson system with radiation damping, Ann. Henri Poincaré, 2 (2001), 857-886. doi: 10.1007/s00023-001-8596-z.

[13]

M. Kunze, H. Spohn, Post-Coulombian dynamics at order $c^-3$, J. Nonlinear Sci., 11 (2001), 321-396. doi: 10.1007/s00332-001-0455-z.

[14]

H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci., 27 (2004), 249-287. doi: 10.1002/mma.424.

[15]

A. Lindner, Ck-Regularität der Lösungen des Vlasov-Poisson-Systems partieller Differentialgleichungen Diploma thesis, Ludwig Maximilian Universität, München, 1991.

[16]

P. L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent.Math., 105 (1991), 415-430. doi: 10.1007/BF01232273.

[17]

G. Rein, Collisionless kinetic equations from astrophysics---the Vlasov-Poisson system, Handbook of differential equations: evolutionary equations, Handb. Differ. Equ, (2007), 383-476. doi: 10.1016/S1874-5717(07)80008-9.

[18]

J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 104 (1986), 403-421.

[19]

H. Spohn, Dynamics of Charged Particles and their Radiation Field Cambridge University press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.

[21]

W. Walter, Ordinary Differential Equations Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0601-9.

show all references

References:
[1]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differental Equations, 25 (1977), 342-364. doi: 10.1016/0022-0396(77)90049-3.

[2]

S. Bauer, Post-Newtonian dynamics at order 1. 5 in the Vlasov-Maxwell system, preprint, arXiv: math-ph/0602031.

[3]

S. Bauer, M. Kunze, The Darwin approximation of the relativistic Vlasov-Maxwell system, Ann. Henri Poincaré, 6 (2005), 283-308. doi: 10.1007/s00023-005-0207-y.

[4]

S. Bauer, M. Kunze, Radiative friction for charges interacting with the radiation field: Classical many-particle systems, in Analysis, Modeling and Simulation of Multiscale Problems, (2006), 531-551. doi: 10.1007/3-540-35657-6_19.

[5]

S. Bauer, M. Kunze, G. Rein, A. D. Rendall, Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation, Comm. Math. Phys., 266 (2008), 267-288. doi: 10.1007/s00220-006-0015-3.

[6]

J. Chen and X. Zhang, Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping Internat. J. Math. 26 (2015), 1550098, 19 pp. doi: 10.1142/S0129167X15500986.

[7]

Z. Chen, X. Zhang, Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy, Commun. Math. Phys., 343 (2016), 851-879. doi: 10.1007/s00220-016-2616-9.

[8]

L. E. Fraenkel, Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc., 83 (1978), 159-165. doi: 10.1017/S0305004100054402.

[9]

J. D. Jackson, Classical Electrodynamics Second edition. John Wiley & Sons, Inc. , New York-London-Sydney, 1975.

[10]

S. Kunimochi, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Lond. A, 116 (1990), 45-78. doi: 10.1017/S0308210500031371.

[11]

M. Kunze, A. D. Rendall, Simplified models of electromagnetic and gravitational radiation damping, Classical Quantum Gravity, 18 (2001), 3573-3587. doi: 10.1088/0264-9381/18/17/311.

[12]

M. Kunze, A. D. Rendall, The Vlasov-Poisson system with radiation damping, Ann. Henri Poincaré, 2 (2001), 857-886. doi: 10.1007/s00023-001-8596-z.

[13]

M. Kunze, H. Spohn, Post-Coulombian dynamics at order $c^-3$, J. Nonlinear Sci., 11 (2001), 321-396. doi: 10.1007/s00332-001-0455-z.

[14]

H. Lee, The classical limit of the relativistic Vlasov-Maxwell system in two space dimensions, Math. Methods Appl. Sci., 27 (2004), 249-287. doi: 10.1002/mma.424.

[15]

A. Lindner, Ck-Regularität der Lösungen des Vlasov-Poisson-Systems partieller Differentialgleichungen Diploma thesis, Ludwig Maximilian Universität, München, 1991.

[16]

P. L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent.Math., 105 (1991), 415-430. doi: 10.1007/BF01232273.

[17]

G. Rein, Collisionless kinetic equations from astrophysics---the Vlasov-Poisson system, Handbook of differential equations: evolutionary equations, Handb. Differ. Equ, (2007), 383-476. doi: 10.1016/S1874-5717(07)80008-9.

[18]

J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 104 (1986), 403-421.

[19]

H. Spohn, Dynamics of Charged Particles and their Radiation Field Cambridge University press, Cambridge, 2004. doi: 10.1017/CBO9780511535178.

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970.

[21]

W. Walter, Ordinary Differential Equations Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0601-9.

[1]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[2]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[3]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[4]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[5]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[6]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[7]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[8]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[9]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[10]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[11]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[12]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[13]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[14]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[15]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[16]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system . Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[17]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[18]

Martin Seehafer. A local existence result for a plasma physics model containing a fully coupled magnetic field. Kinetic & Related Models, 2009, 2 (3) : 503-520. doi: 10.3934/krm.2009.2.503

[19]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[20]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

2016 Impact Factor: 1.261

Article outline

[Back to Top]