2015, 8(2): 215-234. doi: 10.3934/krm.2015.8.215

Numerical methods for a class of generalized nonlinear Schrödinger equations

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany, Germany

2. 

Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

Received  August 2013 Revised  September 2014 Published  March 2015

We present and analyze different splitting algorithms for numerical solution of the both classical and generalized nonlinear Schrödinger equations describing propagation of wave packets with special emphasis on applications to nonlinear fiber-optics. The considered generalizations take into account the higher-order corrections of the linear differential dispersion operator as well as the saturation of nonlinearity and the self-steepening of the field envelope function. For stabilization of the pseudo-spectral splitting schemes for generalized Schrödinger equations a regularization based on the approximation of the derivatives by the low number of Fourier modes is proposed. To illustrate the theoretically predicted performance of these schemes several numerical experiments have been done. In particular, we compute real-world examples of extreme pulses propagating in silica fibers.
Citation: Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215
References:
[1]

M. J. Ablowitz and T. P. Horikis, Solitons and spectral renormalization methods in nonlinear optics,, Eur. Phys. J. Special Topics, 173 (2009), 147. doi: 10.1140/epjst/e2009-01072-0.

[2]

G. P. Agrawal, Nonlinear Fiber Optics,, $4^{th}$ edition, (2007).

[3]

N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams,, Chapman and Hall, (1997).

[4]

N. Akhmediev and M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers,, Phys. Rev. A, 51 (1995), 2602. doi: 10.1103/PhysRevA.51.2602.

[5]

G. D. Akrivis and V. D. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation,, RAIRO Model. Math. Anal. Numer., 25 (1991), 643.

[6]

G. D. Akrivis, V. D. Dougalis and V. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numer. Math., 59 (1991), 31. doi: 10.1007/BF01385769.

[7]

Sh. Amiranashvili, U. Bandelow and A. Mielke, Padé approximant for refractive index and nonlocal envelope equations,, Opt. Comm., 283 (2010), 480. doi: 10.1016/j.optcom.2009.10.034.

[8]

Sh. Amiranashvili and A. Demircan, Hamiltonian structure of propagation equations for ultrashort optical pulses,, Phys. Rev. A, 82 (2010). doi: 10.1103/PhysRevA.82.013812.

[9]

Sh. Amiranashvili and A. Demircan, Ultrashort optical pulse propagation in terms of analytic signal,, Advances in Optical Technologies, 2011 (2011). doi: 10.1155/2011/989515.

[10]

X. Antoine, A. Arnold, Ch. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Physics, 4 (2008), 729.

[11]

X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of nonlinear schrödinger/gross-pitaevskii equations,, Comput. Phys. Commun., 184 (2013), 2621. doi: 10.1016/j.cpc.2013.07.012.

[12]

W. Bao, Sh. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes,, SIAM J. Sci. Comput., 25 (2003), 27. doi: 10.1137/S1064827501393253.

[13]

W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear schrödinger equation,, J. Comput. Phys., 235 (2013), 423. doi: 10.1016/j.jcp.2012.10.054.

[14]

M. Bass, E. W. Van Stryland, D. R. Williams and W. L. Wolfe, editors, Handbook of Optics, Volume 1,, $2^{nd}$ edition, (1995).

[15]

A. Borzi and E. Decker, Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation,, J. Comput. Appl. Math., 193 (2006), 65. doi: 10.1016/j.cam.2005.04.066.

[16]

R. W. Boyd, Nonlinear Optics,, $3^rd$ edition, (2008).

[17]

Q. Chang, E. Jia and W. Sun, Difference schemes for solving the generalized nonlinear schrödinger equation,, J. Comput. Phys., 148 (1999), 397. doi: 10.1006/jcph.1998.6120.

[18]

R. Čiegis, I. Laukaitytė and M. Radziunas, Numerical algorithms for Schrödinger equations with artificial boundary conditions,, Numer. Funct. Anal. Optim., 30 (2009), 903. doi: 10.1080/01630560903393097.

[19]

R. Čiegis and M. Radziunas, Effective numerical integration of traveling wave model for edge-emitting broad-area semiconductor lasers and amplifiers,, Math. Model. Anal., 15 (2010), 409. doi: 10.3846/1392-6292.2010.15.409-430.

[20]

A. Demircan, Sh. Amiranashvili, C. Brée and G. Steinmeyer, Compressible octave spanning supercontinuum generation by two-pulse collisions,, Phys. Rev. Lett., 110 (2013). doi: 10.1103/PhysRevLett.110.233901.

[21]

A. Demircan, Sh. Amiranashvili and G. Steinmeyer, Controlling light by light with an optical event horizon,, Phys. Rev. Lett., 106 (2011). doi: 10.1103/PhysRevLett.106.163901.

[22]

J. M. Dudley, G. Genty and S. Coen, Supercontinuum generation in photonic crystal fiber,, Rev. Mod. Phys., 78 (2006), 1135. doi: 10.1103/RevModPhys.78.1135.

[23]

M. D. Feit, J. A. Fleck and A. Steiger, Solution of the Schrödinger equation by a spectral method,, J. Comput. Phys., 47 (1982), 412. doi: 10.1016/0021-9991(82)90091-2.

[24]

A. Hasegawa, Optical Solitons in Fibers,, Springer, (1980).

[25]

W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Difusion-Reaction Equations,, Springer Series in Computational Mathematics, (2003). doi: 10.1007/978-3-662-09017-6.

[26]

A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics,, Applied Mathematical Sciences, (1992). doi: 10.1007/978-1-4757-2184-3.

[27]

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comput., 77 (2008), 2141. doi: 10.1090/S0025-5718-08-02101-7.

[28]

G. Muslu and H. Erbay, Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation,, Mathematics and Computers in Simulation, 67 (2005), 581. doi: 10.1016/j.matcom.2004.08.002.

[29]

Ch. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential,, BIT Numer. Math., 49 (2009), 199. doi: 10.1007/s10543-009-0215-2.

[30]

D. Pathria and J. L. Morris, Exact solutions for a generalized nonlinear Schrödinger equation,, Phys. Scripta, 39 (1989), 673. doi: 10.1088/0031-8949/39/6/001.

[31]

D. Pathria and J. L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equations,, J. Comput. Phys., 87 (1990), 108. doi: 10.1016/0021-9991(90)90228-S.

[32]

M. Radziunas, R. Čiegis and A. Mirinavičius, On compact high order finite difference schemes for linear Schrödinger problem on non-uniform meshes,, Int. Journal of Num. Anal. Model., 11 (2014), 303.

[33]

J. M. Sanz-Serna and J. G. Verwer, Conservative and non-conservative schemes for the solution of the nonlinear Schrödinger equation,, IMA J. Numer. Anal., 6 (1986), 25. doi: 10.1093/imanum/6.1.25.

[34]

J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems,, Applied Mathematics and Mathematical Computation, (1994).

[35]

J. M. Stone and J. C. Knight, Visibly white light generation in uniform photonic crystal fiber using a microchip laser,, Opt. Express, 16 (2008), 2670. doi: 10.1364/OE.16.002670.

[36]

G. Strang, On the construction and comparison of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506. doi: 10.1137/0705041.

[37]

T. R. Taha and M. J. Ablovitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical Schrödinger equation,, J. Comp. Phys., 55 (1984), 203. doi: 10.1016/0021-9991(84)90003-2.

[38]

M. Thalhammer, M. Caliari and Ch. Neuhauser, High-order time-splitting Hermite and Fourier spectral methods,, J. Comput. Phys., 228 (2009), 822. doi: 10.1016/j.jcp.2008.10.008.

[39]

D. E. Vakman and L. A. Vainshtein, Amplitude, phase, frequency - fundamental concepts of oscillation theory,, Usp. Fiz. Nauk, 20 (1977), 1002. doi: 10.1070/PU1977v020n12ABEH005479.

[40]

P. K. A. Wai, H. H. Chen and Y. C. Lee, Radiations by "solitons" at the zero group-dispersion wavelength of single-mode optical fibers,, Phys. Rev. A, 41 (1990), 426. doi: 10.1103/PhysRevA.41.426.

[41]

V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,, Sov. Phys. JETP, 34 (1972), 62.

show all references

References:
[1]

M. J. Ablowitz and T. P. Horikis, Solitons and spectral renormalization methods in nonlinear optics,, Eur. Phys. J. Special Topics, 173 (2009), 147. doi: 10.1140/epjst/e2009-01072-0.

[2]

G. P. Agrawal, Nonlinear Fiber Optics,, $4^{th}$ edition, (2007).

[3]

N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams,, Chapman and Hall, (1997).

[4]

N. Akhmediev and M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers,, Phys. Rev. A, 51 (1995), 2602. doi: 10.1103/PhysRevA.51.2602.

[5]

G. D. Akrivis and V. D. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation,, RAIRO Model. Math. Anal. Numer., 25 (1991), 643.

[6]

G. D. Akrivis, V. D. Dougalis and V. A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation,, Numer. Math., 59 (1991), 31. doi: 10.1007/BF01385769.

[7]

Sh. Amiranashvili, U. Bandelow and A. Mielke, Padé approximant for refractive index and nonlocal envelope equations,, Opt. Comm., 283 (2010), 480. doi: 10.1016/j.optcom.2009.10.034.

[8]

Sh. Amiranashvili and A. Demircan, Hamiltonian structure of propagation equations for ultrashort optical pulses,, Phys. Rev. A, 82 (2010). doi: 10.1103/PhysRevA.82.013812.

[9]

Sh. Amiranashvili and A. Demircan, Ultrashort optical pulse propagation in terms of analytic signal,, Advances in Optical Technologies, 2011 (2011). doi: 10.1155/2011/989515.

[10]

X. Antoine, A. Arnold, Ch. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,, Commun. Comput. Physics, 4 (2008), 729.

[11]

X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of nonlinear schrödinger/gross-pitaevskii equations,, Comput. Phys. Commun., 184 (2013), 2621. doi: 10.1016/j.cpc.2013.07.012.

[12]

W. Bao, Sh. Jin and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes,, SIAM J. Sci. Comput., 25 (2003), 27. doi: 10.1137/S1064827501393253.

[13]

W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear schrödinger equation,, J. Comput. Phys., 235 (2013), 423. doi: 10.1016/j.jcp.2012.10.054.

[14]

M. Bass, E. W. Van Stryland, D. R. Williams and W. L. Wolfe, editors, Handbook of Optics, Volume 1,, $2^{nd}$ edition, (1995).

[15]

A. Borzi and E. Decker, Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation,, J. Comput. Appl. Math., 193 (2006), 65. doi: 10.1016/j.cam.2005.04.066.

[16]

R. W. Boyd, Nonlinear Optics,, $3^rd$ edition, (2008).

[17]

Q. Chang, E. Jia and W. Sun, Difference schemes for solving the generalized nonlinear schrödinger equation,, J. Comput. Phys., 148 (1999), 397. doi: 10.1006/jcph.1998.6120.

[18]

R. Čiegis, I. Laukaitytė and M. Radziunas, Numerical algorithms for Schrödinger equations with artificial boundary conditions,, Numer. Funct. Anal. Optim., 30 (2009), 903. doi: 10.1080/01630560903393097.

[19]

R. Čiegis and M. Radziunas, Effective numerical integration of traveling wave model for edge-emitting broad-area semiconductor lasers and amplifiers,, Math. Model. Anal., 15 (2010), 409. doi: 10.3846/1392-6292.2010.15.409-430.

[20]

A. Demircan, Sh. Amiranashvili, C. Brée and G. Steinmeyer, Compressible octave spanning supercontinuum generation by two-pulse collisions,, Phys. Rev. Lett., 110 (2013). doi: 10.1103/PhysRevLett.110.233901.

[21]

A. Demircan, Sh. Amiranashvili and G. Steinmeyer, Controlling light by light with an optical event horizon,, Phys. Rev. Lett., 106 (2011). doi: 10.1103/PhysRevLett.106.163901.

[22]

J. M. Dudley, G. Genty and S. Coen, Supercontinuum generation in photonic crystal fiber,, Rev. Mod. Phys., 78 (2006), 1135. doi: 10.1103/RevModPhys.78.1135.

[23]

M. D. Feit, J. A. Fleck and A. Steiger, Solution of the Schrödinger equation by a spectral method,, J. Comput. Phys., 47 (1982), 412. doi: 10.1016/0021-9991(82)90091-2.

[24]

A. Hasegawa, Optical Solitons in Fibers,, Springer, (1980).

[25]

W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Difusion-Reaction Equations,, Springer Series in Computational Mathematics, (2003). doi: 10.1007/978-3-662-09017-6.

[26]

A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics,, Applied Mathematical Sciences, (1992). doi: 10.1007/978-1-4757-2184-3.

[27]

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comput., 77 (2008), 2141. doi: 10.1090/S0025-5718-08-02101-7.

[28]

G. Muslu and H. Erbay, Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation,, Mathematics and Computers in Simulation, 67 (2005), 581. doi: 10.1016/j.matcom.2004.08.002.

[29]

Ch. Neuhauser and M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential,, BIT Numer. Math., 49 (2009), 199. doi: 10.1007/s10543-009-0215-2.

[30]

D. Pathria and J. L. Morris, Exact solutions for a generalized nonlinear Schrödinger equation,, Phys. Scripta, 39 (1989), 673. doi: 10.1088/0031-8949/39/6/001.

[31]

D. Pathria and J. L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equations,, J. Comput. Phys., 87 (1990), 108. doi: 10.1016/0021-9991(90)90228-S.

[32]

M. Radziunas, R. Čiegis and A. Mirinavičius, On compact high order finite difference schemes for linear Schrödinger problem on non-uniform meshes,, Int. Journal of Num. Anal. Model., 11 (2014), 303.

[33]

J. M. Sanz-Serna and J. G. Verwer, Conservative and non-conservative schemes for the solution of the nonlinear Schrödinger equation,, IMA J. Numer. Anal., 6 (1986), 25. doi: 10.1093/imanum/6.1.25.

[34]

J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems,, Applied Mathematics and Mathematical Computation, (1994).

[35]

J. M. Stone and J. C. Knight, Visibly white light generation in uniform photonic crystal fiber using a microchip laser,, Opt. Express, 16 (2008), 2670. doi: 10.1364/OE.16.002670.

[36]

G. Strang, On the construction and comparison of difference schemes,, SIAM J. Numer. Anal., 5 (1968), 506. doi: 10.1137/0705041.

[37]

T. R. Taha and M. J. Ablovitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical Schrödinger equation,, J. Comp. Phys., 55 (1984), 203. doi: 10.1016/0021-9991(84)90003-2.

[38]

M. Thalhammer, M. Caliari and Ch. Neuhauser, High-order time-splitting Hermite and Fourier spectral methods,, J. Comput. Phys., 228 (2009), 822. doi: 10.1016/j.jcp.2008.10.008.

[39]

D. E. Vakman and L. A. Vainshtein, Amplitude, phase, frequency - fundamental concepts of oscillation theory,, Usp. Fiz. Nauk, 20 (1977), 1002. doi: 10.1070/PU1977v020n12ABEH005479.

[40]

P. K. A. Wai, H. H. Chen and Y. C. Lee, Radiations by "solitons" at the zero group-dispersion wavelength of single-mode optical fibers,, Phys. Rev. A, 41 (1990), 426. doi: 10.1103/PhysRevA.41.426.

[41]

V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,, Sov. Phys. JETP, 34 (1972), 62.

[1]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[2]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[3]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[4]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[5]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[6]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[7]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\R^2$. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[8]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[9]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[10]

Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017

[11]

Pascal Bégout, Jesús Ildefonso Díaz. A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3371-3382. doi: 10.3934/dcds.2014.34.3371

[12]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[13]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[14]

Jinyan Fan, Jianyu Pan. Inexact Levenberg-Marquardt method for nonlinear equations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1223-1232. doi: 10.3934/dcdsb.2004.4.1223

[15]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[16]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[17]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[18]

Saeed Ketabchi, Hossein Moosaei, M. Parandegan, Hamidreza Navidi. Computing minimum norm solution of linear systems of equations by the generalized Newton method. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 113-119. doi: 10.3934/naco.2017008

[19]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[20]

Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

[Back to Top]