2013, 6(4): 1011-1041. doi: 10.3934/krm.2013.6.1011

Local existence with mild regularity for the Boltzmann equation

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240

2. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501

3. 

17-26 Iwasaki, Hodogaya, Yokohama 240-0015

4. 

Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray

5. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received  August 2013 Revised  September 2013 Published  November 2013

Without Grad's angular cutoff assumption, the local existence of classical solutions to the Boltzmann equation is studied. There are two new improvements: the index of Sobolev spaces for the solution is related to the parameter of the angular singularity; moreover, we do not assume that the initial data is close to a global equilibrium. Using the energy method, one important step in the analysis is the study of fractional derivatives of the collision operator and related commutators.
Citation: Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011
References:
[1]

R. Alexandre, Some solutions of the Boltzmann equation without angular cutof,, J. Stat. Physics, 104 (2001), 327. doi: 10.1023/A:1010317913642.

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083.

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1.

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, Comm. Math. Phys., 304 (2011), 513. doi: 10.1007/s00220-011-1242-9.

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential,, J. Funct. Anal., 262 (2012), 915. doi: 10.1016/j.jfa.2011.10.007.

[6]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space : II. Global existence for hard potential,, Anal. Appl.(Singap.), 9 (2011), 113. doi: 10.1142/S0219530511001777.

[7]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0.

[8]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Bounded solutions of the Boltzmann equation in the whole space,, Kinet. Relat. Models, 4 (2011), 17. doi: 10.3934/krm.2011.4.17.

[9]

R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction,, Communications on Pure and Applied Mathematics, 55 (2002), 30. doi: 10.1002/cpa.10012.

[10]

C. Cercignani, The Boltzmann Equation and Its Applications,, Applied mathematical sciences 67, 67 (1988). doi: 10.1007/978-1-4612-1039-9.

[11]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases., Applied mathematical sciences 106. Springer-Verlag, 106 (1994).

[12]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability,, Ann. Math., 130 (1989), 321. doi: 10.2307/1971423.

[13]

H. Grad, Asymptotic theory of the boltzmann equation II,, In Rarefied Gas Dynamics, 1 (1963), 26.

[14]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off,, J. Amer. Math. Soc., 24 (2011), 771. doi: 10.1090/S0894-0347-2011-00697-8.

[15]

Y. Guo, The Landau equation in a periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9.

[16]

Y. Guo, Bounded solutions for the Boltzmann equationn,, Quaterly of Applied Mathematics, 68 (2010), 143.

[17]

P. L. Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire,(French) [Regularity and compactness for Boltzmann collision kernels without angular cutoff],, C. R. Acad. Sci. Paris Series I Math, 326 (1998), 37. doi: 10.1016/S0764-4442(97)82709-7.

[18]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011.

[19]

Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 187. doi: 10.3934/dcds.2009.24.187.

[20]

Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential, I, II,, Commun. Pure Appl. Math., 27 (1974), 559. doi: 10.1002/cpa.3160270402.

[21]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027.

[22]

S. Ukai, Les solutions globales de l'equation de Boltzmann dans l'espace tout entier et dans le demi-espace,, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976), 317.

[23]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff,, Japan J. Appl. Math., 1 (1984), 141. doi: 10.1007/BF03167864.

[24]

S. Ukai, Solutions of the Boltzmann equation,, Patterns and waves, 18 (1986), 37. doi: 10.1016/S0168-2024(08)70128-0.

[25]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions,, Analysis and Applications, 4 (2006), 263. doi: 10.1142/S0219530506000784.

[26]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of mathematical fluid dynamics, I (2002), 71. doi: 10.1016/S1874-5792(02)80004-0.

show all references

References:
[1]

R. Alexandre, Some solutions of the Boltzmann equation without angular cutof,, J. Stat. Physics, 104 (2001), 327. doi: 10.1023/A:1010317913642.

[2]

R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions,, Arch. Rational Mech. Anal., 152 (2000), 327. doi: 10.1007/s002050000083.

[3]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,, Arch. Rational Mech. Anal., 198 (2010), 39. doi: 10.1007/s00205-010-0290-1.

[4]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff,, Comm. Math. Phys., 304 (2011), 513. doi: 10.1007/s00220-011-1242-9.

[5]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential,, J. Funct. Anal., 262 (2012), 915. doi: 10.1016/j.jfa.2011.10.007.

[6]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space : II. Global existence for hard potential,, Anal. Appl.(Singap.), 9 (2011), 113. doi: 10.1142/S0219530511001777.

[7]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions,, Arch. Ration. Mech. Anal., 202 (2011), 599. doi: 10.1007/s00205-011-0432-0.

[8]

R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Bounded solutions of the Boltzmann equation in the whole space,, Kinet. Relat. Models, 4 (2011), 17. doi: 10.3934/krm.2011.4.17.

[9]

R. Alexandre and C. Villani, On the Boltzmann equation for long-range interaction,, Communications on Pure and Applied Mathematics, 55 (2002), 30. doi: 10.1002/cpa.10012.

[10]

C. Cercignani, The Boltzmann Equation and Its Applications,, Applied mathematical sciences 67, 67 (1988). doi: 10.1007/978-1-4612-1039-9.

[11]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases., Applied mathematical sciences 106. Springer-Verlag, 106 (1994).

[12]

R. J. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability,, Ann. Math., 130 (1989), 321. doi: 10.2307/1971423.

[13]

H. Grad, Asymptotic theory of the boltzmann equation II,, In Rarefied Gas Dynamics, 1 (1963), 26.

[14]

P.-T. Gressman and R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off,, J. Amer. Math. Soc., 24 (2011), 771. doi: 10.1090/S0894-0347-2011-00697-8.

[15]

Y. Guo, The Landau equation in a periodic box,, Comm. Math. Phys., 231 (2002), 391. doi: 10.1007/s00220-002-0729-9.

[16]

Y. Guo, Bounded solutions for the Boltzmann equationn,, Quaterly of Applied Mathematics, 68 (2010), 143.

[17]

P. L. Lions, Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire,(French) [Regularity and compactness for Boltzmann collision kernels without angular cutoff],, C. R. Acad. Sci. Paris Series I Math, 326 (1998), 37. doi: 10.1016/S0764-4442(97)82709-7.

[18]

T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation,, Phys. D, 188 (2004), 178. doi: 10.1016/j.physd.2003.07.011.

[19]

Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 187. doi: 10.3934/dcds.2009.24.187.

[20]

Y. P. Pao, Boltzmann collision operator with inverse power intermolecular potential, I, II,, Commun. Pure Appl. Math., 27 (1974), 559. doi: 10.1002/cpa.3160270402.

[21]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027.

[22]

S. Ukai, Les solutions globales de l'equation de Boltzmann dans l'espace tout entier et dans le demi-espace,, C. R. Acad. Sci. Paris Ser. A-B, 282 (1976), 317.

[23]

S. Ukai, Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff,, Japan J. Appl. Math., 1 (1984), 141. doi: 10.1007/BF03167864.

[24]

S. Ukai, Solutions of the Boltzmann equation,, Patterns and waves, 18 (1986), 37. doi: 10.1016/S0168-2024(08)70128-0.

[25]

S. Ukai and T. Yang, The Boltzmann equation in the space $L^2\cap L^\infty_\beta$: Global and time-periodic solutions,, Analysis and Applications, 4 (2006), 263. doi: 10.1142/S0219530506000784.

[26]

C. Villani, A review of mathematical topics in collisional kinetic theory,, Handbook of mathematical fluid dynamics, I (2002), 71. doi: 10.1016/S1874-5792(02)80004-0.

[1]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[2]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[3]

Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic & Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433

[4]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[5]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[6]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[7]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[8]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[9]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[10]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[11]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[12]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[13]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[14]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[15]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[16]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[17]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[18]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[19]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[20]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (4)

[Back to Top]