2018, 13: 163-185. doi: 10.3934/jmd.2018016

Symmetry of entropy in higher rank diagonalizable actions and measure classification

1. 

D-Math, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland

2. 

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel

In memory of Roy Adler

Received  August 10, 2017 Revised  December 11, 2017 Published  December 2018

Fund Project: ME: Supported by the SNF (Grant 200021-152819).
EL: Supported by ISF grant 891/15

An important consequence of the theory of entropy of $ \mathbb{Z}$-actions is that the events measurable with respect to the far future coincide (modulo null sets) with those measurable with respect to the distant past, and that measuring the entropy using the past will give the same value as measuring it using the future. In this paper we show that for measures invariant under multiparameter algebraic actions if the entropy attached to coarse Lyapunov foliations fail to display a stronger symmetry property of a similar type this forces the measure to be invariant under non-trivial unipotent groups. Some consequences of this phenomenon are noted.

Citation: Manfred Einsiedler, Elon Lindenstrauss. Symmetry of entropy in higher rank diagonalizable actions and measure classification. Journal of Modern Dynamics, 2018, 13: 163-185. doi: 10.3934/jmd.2018016
References:
[1]

M. Einsiedler and A. Katok, Invariant measures on $ G/Γ$ for split simple Lie groups $ G$, Comm. Pure Appl. Math., 56 (2003), 1184-1221. doi: 10.1002/cpa.10092.

[2]

M. Einsiedler and A. Katok, Rigidity of measures - the high entropy case, and non-commuting foliations. Probability in mathematics, Israel J. Math., 148 (2005), 169-238.

[3]

M. EinsiedlerA. Katok and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math. (2), 164 (2006), 513-560. doi: 10.4007/annals.2006.164.513.

[4]

M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 155-241.

[5]

M. Einsiedler and E. Lindenstrauss, On measures invariant under tori on quotients of semisimple groups, Ann. of Math. (2), 181 (2015), 993-1031. doi: 10.4007/annals.2015.181.3.3.

[6]

M. Einsiedler and E. Lindenstrauss, Joinings of higher rank torus actions on homogeneous spaces, Publications Mathématiques de l'IHÉS, (2016), 39 pp.

[7]

M. Einsiedler, E. Lindenstrauss and A. Mohammadi, Diagonal actions in positive characteristic, (2017), 41pp, arXiv: 1705.10418,

[8]

M. EinsiedlerE. LindenstraussP. Michel and A. Venkatesh, Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J., 148 (2009), 119-174. doi: 10.1215/00127094-2009-023.

[9]

M. Einsiedler, E. Lindenstrauss and T. Ward, Entropy in Ergodic Theory and Homogeneous Dynamics, 2017, in preparation, https://tbward0.wixsite.com/books/entropy.

[10]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.

[11]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.

[12]

B. Kalinin and A. Katok, Invariant measures for actions of higher rank abelian groups, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001, 593-637. doi: 10.1090/pspum/069/1858547.

[13]

A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, 16 (1996), 751-778. doi: 10.1017/S0143385700009081.

[14]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295.

[15]

E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2), 163 (2006), 165-219. doi: 10.4007/annals.2006.163.165.

[16]

E. Lindenstrauss and B. Weiss, On sets invariant under the action of the diagonal group, Ergodic Theory Dynam. Systems, 21 (2001), 1481-1500. doi: 10.1017/S0143385701001717.

[17]

G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1991.

[18]

G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347-392.

[19]

G. A. Margulis and G. M. Tomanov, Measure rigidity for almost linear groups and its applications, J. Anal. Math., 69 (1996), 25-54.

[20]

M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.

[21]

M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., 165 (1990), 229-309. doi: 10.1007/BF02391906.

[22]

M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607. doi: 10.2307/2944357.

[23]

M. Ratner, Raghunathan's conjectures for Cartesian products of real and $ p$-adic Lie groups, Duke Math. J., 77 (1995), 275-382. doi: 10.1215/S0012-7094-95-07710-2.

show all references

References:
[1]

M. Einsiedler and A. Katok, Invariant measures on $ G/Γ$ for split simple Lie groups $ G$, Comm. Pure Appl. Math., 56 (2003), 1184-1221. doi: 10.1002/cpa.10092.

[2]

M. Einsiedler and A. Katok, Rigidity of measures - the high entropy case, and non-commuting foliations. Probability in mathematics, Israel J. Math., 148 (2005), 169-238.

[3]

M. EinsiedlerA. Katok and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood's conjecture, Ann. of Math. (2), 164 (2006), 513-560. doi: 10.4007/annals.2006.164.513.

[4]

M. Einsiedler and E. Lindenstrauss, Diagonal actions on locally homogeneous spaces, in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010, 155-241.

[5]

M. Einsiedler and E. Lindenstrauss, On measures invariant under tori on quotients of semisimple groups, Ann. of Math. (2), 181 (2015), 993-1031. doi: 10.4007/annals.2015.181.3.3.

[6]

M. Einsiedler and E. Lindenstrauss, Joinings of higher rank torus actions on homogeneous spaces, Publications Mathématiques de l'IHÉS, (2016), 39 pp.

[7]

M. Einsiedler, E. Lindenstrauss and A. Mohammadi, Diagonal actions in positive characteristic, (2017), 41pp, arXiv: 1705.10418,

[8]

M. EinsiedlerE. LindenstraussP. Michel and A. Venkatesh, Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J., 148 (2009), 119-174. doi: 10.1215/00127094-2009-023.

[9]

M. Einsiedler, E. Lindenstrauss and T. Ward, Entropy in Ergodic Theory and Homogeneous Dynamics, 2017, in preparation, https://tbward0.wixsite.com/books/entropy.

[10]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011.

[11]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.

[12]

B. Kalinin and A. Katok, Invariant measures for actions of higher rank abelian groups, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001, 593-637. doi: 10.1090/pspum/069/1858547.

[13]

A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, 16 (1996), 751-778. doi: 10.1017/S0143385700009081.

[14]

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146 (2001), 259-295.

[15]

E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2), 163 (2006), 165-219. doi: 10.4007/annals.2006.163.165.

[16]

E. Lindenstrauss and B. Weiss, On sets invariant under the action of the diagonal group, Ergodic Theory Dynam. Systems, 21 (2001), 1481-1500. doi: 10.1017/S0143385701001717.

[17]

G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1991.

[18]

G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., 116 (1994), 347-392.

[19]

G. A. Margulis and G. M. Tomanov, Measure rigidity for almost linear groups and its applications, J. Anal. Math., 69 (1996), 25-54.

[20]

M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972.

[21]

M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math., 165 (1990), 229-309. doi: 10.1007/BF02391906.

[22]

M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2), 134 (1991), 545-607. doi: 10.2307/2944357.

[23]

M. Ratner, Raghunathan's conjectures for Cartesian products of real and $ p$-adic Lie groups, Duke Math. J., 77 (1995), 275-382. doi: 10.1215/S0012-7094-95-07710-2.

[1]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[2]

Kaizhi Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1211-1223. doi: 10.3934/cpaa.2008.7.1211

[3]

Aaron W. Brown. Smooth stabilizers for measures on the torus. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 43-58. doi: 10.3934/dcds.2015.35.43

[4]

Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

[5]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[6]

Paweł G. Walczak. Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4731-4742. doi: 10.3934/dcds.2013.33.4731

[7]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

[8]

Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12.

[9]

Siniša Slijepčević. Stability of invariant measures. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[10]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[11]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[12]

Rostyslav Kravchenko. The action of finite-state tree automorphisms on Bernoulli measures. Journal of Modern Dynamics, 2010, 4 (3) : 443-451. doi: 10.3934/jmd.2010.4.443

[13]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[14]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[15]

Donald Ornstein, Benjamin Weiss. Entropy is the only finitely observable invariant. Journal of Modern Dynamics, 2007, 1 (1) : 93-105. doi: 10.3934/jmd.2007.1.93

[16]

Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219

[17]

Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92.

[18]

Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54.

[19]

Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397

[20]

Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33

2017 Impact Factor: 0.425

Article outline

[Back to Top]