2018, 13: 115-145. doi: 10.3934/jmd.2018014

The mapping class group of a shift of finite type

1. 

Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA

2. 

Algebra and Applications Research Unit, Department of Mathematics and Statistics, Prince of Songkla University, Songkhla, Thailand 90110

Dedicated to Roy Adler, in memory of his insight, humor, and kindness

Received  April 27, 2017 Revised  August 18, 2017 Published  December 2018

Let $(X_A,σ_{A})$ be a nontrivial irreducible shift of finite type (SFT), with $\mathscr{M}_A$ denoting its mapping class group: the group of flow equivalences of its mapping torus $\mathsf{S} X_A$, (i.e., self homeomorphisms of $\mathsf{S} X_A$ which respect the direction of the suspension flow) modulo the subgroup of flow equivalences of $\mathsf{S} X_A$ isotopic to the identity. We develop and apply machinery (flow codes, cohomology constraints) and provide context for the study of $\mathscr M_A$, and prove results including the following. $\mathscr{M}_A$ acts faithfully and $n$-transitively (for every $n$ in $\mathbb{N}$) by permutations on the set of circles of $\mathsf{S} X_A$. The center of $\mathscr{M}_A$ is trivial. The outer automorphism group of $\mathscr{M}_A$ is nontrivial. In many cases, $\text{Aut}(σ_{A})$ admits a nonspatial automorphism. For every SFT $(X_B,σ_B)$ flow equivalent to $(X_A,σ_{A})$, $\mathscr{M}_A$ contains embedded copies of ${\rm{Aut}}({\sigma _B})/\left\langle {{\sigma _B}} \right\rangle $, induced by return maps to invariant cross sections; but, elements of $\mathscr M_A$ not arising from flow equivalences with invariant cross sections are abundant. $\mathscr{M}_A$ is countable and has solvable word problem. $\mathscr{M}_A$ is not residually finite. Conjugacy classes of many (possibly all) involutions in $\mathscr M_A$ can be classified by the $G$-flow equivalence classes of associated $G$-SFTs, for $G = \mathbb{Z}/2\mathbb{Z}$. There are many open questions.

Citation: Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014
References:
[1]

F. Blanchard and G. Hansel, Systèmes codés, Theoret. Comput. Sci., 44 (1986), 17-49.

[2]

R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. of Math. (2), 106 (1977), 73-92. doi: 10.2307/1971159.

[3]

M. Boyle, Flow equivalence of shifts of finite type via positive factorizations, Pacific J. Math., 204 (2002), 273-317. doi: 10.2140/pjm.2002.204.273.

[4]

M. Boyle, Positive K-theory and symbolic dynamics, in Dynamics and Randomness (Santiago, 2000), Nonlinear Phenom. Complex Systems, 7, Kluwer Acad. Publ., 2002, 31-52.

[5]

M. Boyle, T. Carlsen and S. Eilers, Flow equivalence of G-SFTs, arXiv: 1512.05238, 2015.

[6]

M. Boyle, T. Carlsen and S. Eilers, Flow equivalence of sofic shifts, Israel J. Math., to appear; arXiv: 1511.03481, 2015.

[7]

M. BoyleT. Carlsen and S. Eilers, Flow equivalence and isotopy for subshifts, Dyn. Syst., 32 (2017), 305-325. doi: 10.1080/14689367.2016.1207753.

[8]

M. Boyle and U.-R. Fiebig, The action of inert finite-order automorphisms on finite subsystems of the shift, Ergodic Theory Dynam. Systems, 11 (1991), 413-425.

[9]

M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math., 95 (1996), 169-210. doi: 10.1007/BF02761039.

[10]

M. Boyle and D. Huang, Poset block equivalence of integral matrices, Trans. Amer. Math. Soc., 355 (2003), 3861-3886. doi: 10.1090/S0002-9947-03-02947-7.

[11]

M. Boyle and W. Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc., 302 (1987), 125-149. doi: 10.1090/S0002-9947-1987-0887501-5.

[12]

M. Boyle and W. Krieger, Almost Markov and shift equivalent sofic systems, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 33-93.

[13]

M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114. doi: 10.1090/S0002-9947-1988-0927684-2.

[14]

M. Boyle and S. Schmieding, Finite group extensions of shifts of finite type: K-theory, Parry and Livšic, Ergodic Theory Dynam. Systems, 37 (2017), 1026-1059. doi: 10.1017/etds.2015.87.

[15]

M. Boyle and M. C. Sullivan, Equivariant flow equivalence for shifts of finite type, by matrix equivalence over group rings, Proc. London Math. Soc. (3), 91 (2005), 184-214. doi: 10.1112/S0024611505015285.

[16]

M. Boyle and J. B. Wagoner, Positive algebraic K-theory and shifts of finite type, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 45-66.

[17]

V. Capraro and M. Lupini, Introduction to Sofic and Hyperlinear Groups and Connes' Embedding Conjecture, Lecture Notes in Mathematics, 2136, Springer, Cham, 2015. With an appendix by Vladimir Pestov.

[18]

S. Chuysurichay, Positive Rational Strong Shift Equivalence and the Mapping Class Group of a Shift of Finite Type, Thesis (Ph.D.)-University of Maryland, College Park, 2011, 95 pp, ProQuest LLC, Ann Arbor, MI.

[19]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., (2016), Paper No. 3, 28pp.

[20]

V. Cyr, J. Franks, B. Kra and S. Petite, Distortion and the automorphism group of a shift, J. Mod. Dyn., 13 (2018), 147–161. doi: 10.3934/jmd.2018015.

[21]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495. doi: 10.3934/jmd.2016.10.483.

[22]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, 36 (2016), 64-95. doi: 10.1017/etds.2015.70.

[23]

S. EilersG. RestorffE. Ruiz and A. P. W. Sorensen, The complete classification of unital graph C*-algebras: Geometric and strong, Canad. J. Math., 70 (2018), 294-353. doi: 10.4153/CJM-2017-016-7.

[24]

B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.

[25]

U.-R. Fiebig, Periodic points and finite group actions on shifts of finite type, Ergodic Theory Dynam. Systems, 13 (1993), 485-514.

[26]

R. J. Fokkink, The Structure of Trajectories, Thesis (Ph.D.)-Technische Universiteit Delft (The Netherlands), 1991, 112pp, ProQuest LLC, Ann Arbor, MI.

[27]

J. Franks, Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems, 4 (1984), 53-66.

[28]

T. GiordanoI. F. Putnam and C. F. Skau, Topological orbit equivalence and $ C^*$-crossed products, J. Reine Angew. Math., 469 (1995), 51-111.

[29]

T. GiordanoI. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320. doi: 10.1007/BF02810689.

[30]

R. I. Grigorchuk and K. S. Medinets, On the algebraic properties of topological full groups, Mat. Sb., 205 (2014), 87-108.

[31]

G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375. doi: 10.1007/BF01691062.

[32]

M. Hochman, On the automorphism groups of multidimensional shifts of finite type, Ergodic Theory Dynam. Systems, 30 (2010), 809-840. doi: 10.1017/S0143385709000248.

[33]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775-787. doi: 10.4007/annals.2013.178.2.7.

[34]

K. H. Kim and F. W. Roush, On the automorphism groups of subshifts, Pure Math. Appl. Ser. B, 1 (1990), 203-230 (1991).

[35]

K. H. Kim and F. W. Roush, Free $ Z_p$ actions on subshifts, Pure Math. Appl., 8 (1997), 293-322.

[36]

K. H. KimF. W. Roush and J. B. Wagoner, Automorphisms of the dimension group and gyration numbers, J. Amer. Math. Soc., 5 (1992), 191-212. doi: 10.1090/S0894-0347-1992-1124983-3.

[37]

K. H. Kim, F. W. Roush and S. G. Williams, Duality and its consequences for ordered cohomology of finite type subshifts, in Combinatorial & Computational Mathematics (Pohang, 2000), World Sci. Publ., River Edge, NJ, 2001, 243-265.

[38]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301. doi: 10.2140/pjm.2003.209.289.

[39]

D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, 4 (1984), 283-300.

[40]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.

[41]

N. Long, Fixed point shifts of inert involutions, Discrete Contin. Dyn. Syst., 25 (2009), 1297-1317. doi: 10.3934/dcds.2009.25.1297.

[42]

K. Matsumoto and H. Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math., 54 (2014), 863-877. doi: 10.1215/21562261-2801849.

[43]

H. Matui, Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math., 705 (2015), 35-84.

[44]

M. Nasu, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 564-607.

[45]

W. Parry and D. Sullivan, A topological invariant of flows on 1-dimensional spaces, Topology, 14 (1975), 297-299. doi: 10.1016/0040-9383(75)90012-9.

[46]

V. G. Pestov, Hyperlinear and sofic groups: A brief guide, Bull. Symbolic Logic, 14 (2008), 449-480. doi: 10.2178/bsl/1231081461.

[47]

G. Restorff, Classification of Cuntz-Krieger algebras up to stable isomorphism, J. Reine Angew. Math., 598 (2006), 185-210.

[48]

M. Rørdam, Classification of Cuntz-Krieger algebras, K-Theory, 9 (1995), 31-58. doi: 10.1007/BF00965458.

[49]

J. Patrick Ryan, The shift and commutivity. Ⅱ, Math. Systems Theory, 8 (1974/75), 249-250. doi: 10.1007/BF01762673.

[50]

V. Salo, Groups and monoids of cellular automata, in Cellular Automata and Discrete Complex Systems, Lecture Notes in Comput. Sci., 9099, Springer, Heidelberg, 2015, 17-45.

[51]

V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions, Ergodic Theory Dynam. Systems, 35 (2015), 2292-2310. doi: 10.1017/etds.2014.29.

[52]

M. Schraudner, On the algebraic properties of the automorphism groups of countable-state Markov shifts, Ergodic Theory Dynam. Systems, 26 (2006), 551-583. doi: 10.1017/S0143385705000507.

[53]

S. Schwartzman, Asymptotic cycles, Ann. of Math. (2), 66 (1957), 270-284. doi: 10.2307/1969999.

[54]

J. B. Wagoner, Strong shift equivalence theory and the shift equivalence problem, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 271-296. doi: 10.1090/S0273-0979-99-00798-3.

[55]

J. B. Wagoner, Strong shift equivalence and $ K_2$ of the dual numbers, J. Reine Angew. Math., 521 (2000), 119-160, with an appendix by K. H. Kim and F. W. Roush.

[56]

B. Weiss, Sofic groups and dynamical systems, Ergodic Theory and Harmonic Analysis (Mumbai, 1999), Sankhyā Ser. A, 62 (2000), 350-359.

show all references

References:
[1]

F. Blanchard and G. Hansel, Systèmes codés, Theoret. Comput. Sci., 44 (1986), 17-49.

[2]

R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. of Math. (2), 106 (1977), 73-92. doi: 10.2307/1971159.

[3]

M. Boyle, Flow equivalence of shifts of finite type via positive factorizations, Pacific J. Math., 204 (2002), 273-317. doi: 10.2140/pjm.2002.204.273.

[4]

M. Boyle, Positive K-theory and symbolic dynamics, in Dynamics and Randomness (Santiago, 2000), Nonlinear Phenom. Complex Systems, 7, Kluwer Acad. Publ., 2002, 31-52.

[5]

M. Boyle, T. Carlsen and S. Eilers, Flow equivalence of G-SFTs, arXiv: 1512.05238, 2015.

[6]

M. Boyle, T. Carlsen and S. Eilers, Flow equivalence of sofic shifts, Israel J. Math., to appear; arXiv: 1511.03481, 2015.

[7]

M. BoyleT. Carlsen and S. Eilers, Flow equivalence and isotopy for subshifts, Dyn. Syst., 32 (2017), 305-325. doi: 10.1080/14689367.2016.1207753.

[8]

M. Boyle and U.-R. Fiebig, The action of inert finite-order automorphisms on finite subsystems of the shift, Ergodic Theory Dynam. Systems, 11 (1991), 413-425.

[9]

M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math., 95 (1996), 169-210. doi: 10.1007/BF02761039.

[10]

M. Boyle and D. Huang, Poset block equivalence of integral matrices, Trans. Amer. Math. Soc., 355 (2003), 3861-3886. doi: 10.1090/S0002-9947-03-02947-7.

[11]

M. Boyle and W. Krieger, Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc., 302 (1987), 125-149. doi: 10.1090/S0002-9947-1987-0887501-5.

[12]

M. Boyle and W. Krieger, Almost Markov and shift equivalent sofic systems, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 33-93.

[13]

M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114. doi: 10.1090/S0002-9947-1988-0927684-2.

[14]

M. Boyle and S. Schmieding, Finite group extensions of shifts of finite type: K-theory, Parry and Livšic, Ergodic Theory Dynam. Systems, 37 (2017), 1026-1059. doi: 10.1017/etds.2015.87.

[15]

M. Boyle and M. C. Sullivan, Equivariant flow equivalence for shifts of finite type, by matrix equivalence over group rings, Proc. London Math. Soc. (3), 91 (2005), 184-214. doi: 10.1112/S0024611505015285.

[16]

M. Boyle and J. B. Wagoner, Positive algebraic K-theory and shifts of finite type, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, 45-66.

[17]

V. Capraro and M. Lupini, Introduction to Sofic and Hyperlinear Groups and Connes' Embedding Conjecture, Lecture Notes in Mathematics, 2136, Springer, Cham, 2015. With an appendix by Vladimir Pestov.

[18]

S. Chuysurichay, Positive Rational Strong Shift Equivalence and the Mapping Class Group of a Shift of Finite Type, Thesis (Ph.D.)-University of Maryland, College Park, 2011, 95 pp, ProQuest LLC, Ann Arbor, MI.

[19]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., (2016), Paper No. 3, 28pp.

[20]

V. Cyr, J. Franks, B. Kra and S. Petite, Distortion and the automorphism group of a shift, J. Mod. Dyn., 13 (2018), 147–161. doi: 10.3934/jmd.2018015.

[21]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495. doi: 10.3934/jmd.2016.10.483.

[22]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory Dynam. Systems, 36 (2016), 64-95. doi: 10.1017/etds.2015.70.

[23]

S. EilersG. RestorffE. Ruiz and A. P. W. Sorensen, The complete classification of unital graph C*-algebras: Geometric and strong, Canad. J. Math., 70 (2018), 294-353. doi: 10.4153/CJM-2017-016-7.

[24]

B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012.

[25]

U.-R. Fiebig, Periodic points and finite group actions on shifts of finite type, Ergodic Theory Dynam. Systems, 13 (1993), 485-514.

[26]

R. J. Fokkink, The Structure of Trajectories, Thesis (Ph.D.)-Technische Universiteit Delft (The Netherlands), 1991, 112pp, ProQuest LLC, Ann Arbor, MI.

[27]

J. Franks, Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems, 4 (1984), 53-66.

[28]

T. GiordanoI. F. Putnam and C. F. Skau, Topological orbit equivalence and $ C^*$-crossed products, J. Reine Angew. Math., 469 (1995), 51-111.

[29]

T. GiordanoI. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320. doi: 10.1007/BF02810689.

[30]

R. I. Grigorchuk and K. S. Medinets, On the algebraic properties of topological full groups, Mat. Sb., 205 (2014), 87-108.

[31]

G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory, 3 (1969), 320-375. doi: 10.1007/BF01691062.

[32]

M. Hochman, On the automorphism groups of multidimensional shifts of finite type, Ergodic Theory Dynam. Systems, 30 (2010), 809-840. doi: 10.1017/S0143385709000248.

[33]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775-787. doi: 10.4007/annals.2013.178.2.7.

[34]

K. H. Kim and F. W. Roush, On the automorphism groups of subshifts, Pure Math. Appl. Ser. B, 1 (1990), 203-230 (1991).

[35]

K. H. Kim and F. W. Roush, Free $ Z_p$ actions on subshifts, Pure Math. Appl., 8 (1997), 293-322.

[36]

K. H. KimF. W. Roush and J. B. Wagoner, Automorphisms of the dimension group and gyration numbers, J. Amer. Math. Soc., 5 (1992), 191-212. doi: 10.1090/S0894-0347-1992-1124983-3.

[37]

K. H. Kim, F. W. Roush and S. G. Williams, Duality and its consequences for ordered cohomology of finite type subshifts, in Combinatorial & Computational Mathematics (Pohang, 2000), World Sci. Publ., River Edge, NJ, 2001, 243-265.

[38]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301. doi: 10.2140/pjm.2003.209.289.

[39]

D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, 4 (1984), 283-300.

[40]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.

[41]

N. Long, Fixed point shifts of inert involutions, Discrete Contin. Dyn. Syst., 25 (2009), 1297-1317. doi: 10.3934/dcds.2009.25.1297.

[42]

K. Matsumoto and H. Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math., 54 (2014), 863-877. doi: 10.1215/21562261-2801849.

[43]

H. Matui, Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math., 705 (2015), 35-84.

[44]

M. Nasu, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 564-607.

[45]

W. Parry and D. Sullivan, A topological invariant of flows on 1-dimensional spaces, Topology, 14 (1975), 297-299. doi: 10.1016/0040-9383(75)90012-9.

[46]

V. G. Pestov, Hyperlinear and sofic groups: A brief guide, Bull. Symbolic Logic, 14 (2008), 449-480. doi: 10.2178/bsl/1231081461.

[47]

G. Restorff, Classification of Cuntz-Krieger algebras up to stable isomorphism, J. Reine Angew. Math., 598 (2006), 185-210.

[48]

M. Rørdam, Classification of Cuntz-Krieger algebras, K-Theory, 9 (1995), 31-58. doi: 10.1007/BF00965458.

[49]

J. Patrick Ryan, The shift and commutivity. Ⅱ, Math. Systems Theory, 8 (1974/75), 249-250. doi: 10.1007/BF01762673.

[50]

V. Salo, Groups and monoids of cellular automata, in Cellular Automata and Discrete Complex Systems, Lecture Notes in Comput. Sci., 9099, Springer, Heidelberg, 2015, 17-45.

[51]

V. Salo and I. Törmä, Block maps between primitive uniform and Pisot substitutions, Ergodic Theory Dynam. Systems, 35 (2015), 2292-2310. doi: 10.1017/etds.2014.29.

[52]

M. Schraudner, On the algebraic properties of the automorphism groups of countable-state Markov shifts, Ergodic Theory Dynam. Systems, 26 (2006), 551-583. doi: 10.1017/S0143385705000507.

[53]

S. Schwartzman, Asymptotic cycles, Ann. of Math. (2), 66 (1957), 270-284. doi: 10.2307/1969999.

[54]

J. B. Wagoner, Strong shift equivalence theory and the shift equivalence problem, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 271-296. doi: 10.1090/S0273-0979-99-00798-3.

[55]

J. B. Wagoner, Strong shift equivalence and $ K_2$ of the dual numbers, J. Reine Angew. Math., 521 (2000), 119-160, with an appendix by K. H. Kim and F. W. Roush.

[56]

B. Weiss, Sofic groups and dynamical systems, Ergodic Theory and Harmonic Analysis (Mumbai, 1999), Sankhyā Ser. A, 62 (2000), 350-359.

[1]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[2]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[3]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[4]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[5]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[6]

John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7.

[7]

Gunduz Caginalp, Mark DeSantis. Multi-group asset flow equations and stability. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 109-150. doi: 10.3934/dcdsb.2011.16.109

[8]

L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

[9]

François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39

[10]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

[11]

Jinliang Wang, Hongying Shu. Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences & Engineering, 2016, 13 (1) : 209-225. doi: 10.3934/mbe.2016.13.209

[12]

Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407

[13]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[14]

L. Brandolini, M. Rigoli and A. G. Setti. On the existence of positive solutions of Yamabe-type equations on the Heisenberg group. Electronic Research Announcements, 1996, 2: 101-107.

[15]

Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040

[16]

Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503

[17]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[18]

Vincenzo Michael Isaia. Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3459-3481. doi: 10.3934/dcdsb.2017175

[19]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[20]

Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (27)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]