January 2018, 12: 1-8. doi: 10.3934/jmd.2018001

A quantitative Oppenheim theorem for generic ternary quadratic forms

1. 

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India

2. 

Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA

Received  February 27, 2017 Revised  November 10, 2017 Published  December 2017

Fund Project: AG: Partially supported by ISF-UGC. DK: Partially supported by NSF grant DMS-1401747

We prove a quantitative version of Oppenheim's conjecture for generic ternary indefinite quadratic forms. Our results are inspired by and analogous to recent results for diagonal quadratic forms due to Bourgain [3].

Citation: Anish Ghosh, Dubi Kelmer. A quantitative Oppenheim theorem for generic ternary quadratic forms. Journal of Modern Dynamics, 2018, 12: 1-8. doi: 10.3934/jmd.2018001
References:
[1]

J. S. Athreya and G. A. Margulis, Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378. doi: 10.3934/jmd.2009.3.359.

[2]

J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J. Mod. Dyn. , to appear.

[3]

J. Bourgain, A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512. doi: 10.1007/s11856-016-1385-7.

[4]

S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.

[5]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141. doi: 10.2307/120984.

[6]

A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math. , to appear.

[7]

A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018.

[8]

A. Ghosh and D. Kelmer, Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245. doi: 10.1112/blms.12023.

[9]

A. Gorodnik and A. Nevo, The Ergodic Theory of Lattice Subgroups, Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010.

[10]

E. Lindenstrauss and G. Margulis, Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499. doi: 10.1007/s11856-014-1110-3.

[11]

G. A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398.

[12]

H. Oh, Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380. doi: 10.24033/bsmf.2329.

[13]

C. A. Rogers, Mean values over the space of lattices, Acta Math., 94 (1955), 249-287. doi: 10.1007/BF02392493.

[14]

P. Sarnak, Values at integers of binary quadratic forms, in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203.

show all references

References:
[1]

J. S. Athreya and G. A. Margulis, Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3 (2009), 359-378. doi: 10.3934/jmd.2009.3.359.

[2]

J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J. Mod. Dyn. , to appear.

[3]

J. Bourgain, A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512. doi: 10.1007/s11856-016-1385-7.

[4]

S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math., 16 (1993), 91-137.

[5]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141. doi: 10.2307/120984.

[6]

A. Ghosh, A. Gorodnik and A. Nevo, Best possible rates of distribution of dense lattice orbits in homogeneous spaces, J. Reine Angew. Math. , to appear.

[7]

A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, arXiv:1801.01027, 2018.

[8]

A. Ghosh and D. Kelmer, Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49 (2017), 235-245. doi: 10.1112/blms.12023.

[9]

A. Gorodnik and A. Nevo, The Ergodic Theory of Lattice Subgroups, Annals of Mathematics Studies, 172, Princeton University Press, Princeton, NJ, 2010.

[10]

E. Lindenstrauss and G. Margulis, Effective estimates on indefinite ternary forms, Israel J. Math., 203 (2014), 445-499. doi: 10.1007/s11856-014-1110-3.

[11]

G. A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989,377-398.

[12]

H. Oh, Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126 (1998), 355-380. doi: 10.24033/bsmf.2329.

[13]

C. A. Rogers, Mean values over the space of lattices, Acta Math., 94 (1955), 249-287. doi: 10.1007/BF02392493.

[14]

P. Sarnak, Values at integers of binary quadratic forms, in Harmonic Analysis and Number Theory (Montreal, PQ, 1996), CMS Conf. Proc., 21, AMS, Providence, RI, (1997), 181-203.

[1]

Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129

[2]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[3]

Jiyoung Han, Seonhee Lim, Keivan Mallahi-Karai. Asymptotic distribution of values of isotropic here quadratic forms at S-integral points. Journal of Modern Dynamics, 2017, 11: 501-550. doi: 10.3934/jmd.2017020

[4]

Hans Koch, João Lopes Dias. Renormalization of diophantine skew flows, with applications to the reducibility problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 477-500. doi: 10.3934/dcds.2008.21.477

[5]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[6]

Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397

[7]

X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial & Management Optimization, 2006, 2 (3) : 287-296. doi: 10.3934/jimo.2006.2.287

[8]

Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33

[9]

Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92.

[10]

Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54.

[11]

Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689

[12]

Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112.

[13]

Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243

[14]

Jaeyoo Choy, Hahng-Yun Chu. On the dynamics of flows on compact metric spaces. Communications on Pure & Applied Analysis, 2010, 9 (1) : 103-108. doi: 10.3934/cpaa.2010.9.103

[15]

Yong Fang, Patrick Foulon, Boris Hasselblatt. Longitudinal foliation rigidity and Lipschitz-continuous invariant forms for hyperbolic flows. Electronic Research Announcements, 2010, 17: 80-89. doi: 10.3934/era.2010.17.80

[16]

Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323

[17]

Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25

[18]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

[19]

Steve Hofmann, Dorina Mitrea, Marius Mitrea, Andrew J. Morris. Square function estimates in spaces of homogeneous type and on uniformly rectifiable Euclidean sets. Electronic Research Announcements, 2014, 21: 8-18. doi: 10.3934/era.2014.21.8

[20]

Jing Zhou, Dejun Chen, Zhenbo Wang, Wenxun Xing. A conic approximation method for the 0-1 quadratic knapsack problem. Journal of Industrial & Management Optimization, 2013, 9 (3) : 531-547. doi: 10.3934/jimo.2013.9.531

2017 Impact Factor: 0.425

Article outline

[Back to Top]