2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

Complex rotation numbers

1. 

Institut deMathématiques de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France

2. 

National Research University Higher School of Economics, Miasnitskaya Street 20, Moscow, Russia, and Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, Moscow, Russian Federation

Received  July 2013 Revised  May 2015 Published  September 2015

We investigate the notion of complex rotation number which was introduced by V. I. Arnold in 1978. Let $f:\mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be a (real) analytic orientation preserving circle diffeomorphism and let $\omega\in \mathbb{C}/\mathbb{Z}$ be a parameter with positive imaginary part. Construct a complex torus by glueing the two boundary components of the annulus {$z\in \mathbb{C}/\mathbb{Z} | 0 < Im(z)< Im(\omega)$} via the map $f+\omega$. This complex torus is isomorphic to $\mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ for some appropriate $\tau\in \mathbb{C}/\mathbb{Z}$.
    According to Moldavskis [6], if the ordinary rotation number rot$(f+\omega_0)$ is Diophantine and if $\omega$ tends to $\omega_0$ non tangentially to the real axis, then $\tau$ tends to rot$(f+\omega_0)$. We show that the Diophantine and non tangential assumptions are unnecessary: If rot$(f+\omega_0)$ is irrational, then $\tau$ tends to rot$(f+\omega_0)$ as $\omega$ tends to $\omega_0$.
    This, together with results of N. Goncharuk [4], motivates us to introduce a new fractal set (``bubbles'') given by the limit values of $\tau$ as $\omega$ tends to the real axis. For the rational values of rot $(f+\omega_0)$, these limits do not necessarily coincide with rot $(f+\omega_0)$ and form a countable number of analytic loops in the upper half-plane.
Citation: Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169
References:
[1]

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations,, Grund-lehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], (1983).

[2]

É. Ghys, Groups Acting on the Circle: A Selection of Open Problems,, Opening Lecture of Spring School, (2008).

[3]

J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: Three theorems of J.-C. Yoccoz,, in Topological Methods in Modern Mathematics (Stony Brook, (1991), 467.

[4]

N. B. Goncharuk, Rotation numbers and moduli of elliptic curves,, Funct. Anal. Appl., 46 (2012), 11. doi: 10.1007/s10688-012-0002-8.

[5]

Y. Ilyashenko and V. Moldavskis, Morse-Smale circle diffeomorphisms and moduli of elliptic curves,, Mosc. Math. J., 3 (2003), 531.

[6]

V. S. Moldavskiĭ, Moduli of elliptic curves and rotation numbers of diffeomorphisms of the circle,, Funct. Anal. Appl., 35 (2001), 234. doi: 10.1023/A:1012391215252.

[7]

E. Risler, Linéarisation des perturbations holomorphes des rotations et applications,, Mém. Soc. Math. Fr. (N.S.), (1999).

[8]

M. Tsujii, Rotation number and one-parameter families of circle diffeomorphisms,, Ergodic Theory Dynam. Systems, 12 (1992), 359. doi: 10.1017/S0143385700006805.

[9]

J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Sci. École Norm. Sup. (4), 17 (1984), 333.

show all references

References:
[1]

V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations,, Grund-lehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], (1983).

[2]

É. Ghys, Groups Acting on the Circle: A Selection of Open Problems,, Opening Lecture of Spring School, (2008).

[3]

J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: Three theorems of J.-C. Yoccoz,, in Topological Methods in Modern Mathematics (Stony Brook, (1991), 467.

[4]

N. B. Goncharuk, Rotation numbers and moduli of elliptic curves,, Funct. Anal. Appl., 46 (2012), 11. doi: 10.1007/s10688-012-0002-8.

[5]

Y. Ilyashenko and V. Moldavskis, Morse-Smale circle diffeomorphisms and moduli of elliptic curves,, Mosc. Math. J., 3 (2003), 531.

[6]

V. S. Moldavskiĭ, Moduli of elliptic curves and rotation numbers of diffeomorphisms of the circle,, Funct. Anal. Appl., 35 (2001), 234. doi: 10.1023/A:1012391215252.

[7]

E. Risler, Linéarisation des perturbations holomorphes des rotations et applications,, Mém. Soc. Math. Fr. (N.S.), (1999).

[8]

M. Tsujii, Rotation number and one-parameter families of circle diffeomorphisms,, Ergodic Theory Dynam. Systems, 12 (1992), 359. doi: 10.1017/S0143385700006805.

[9]

J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Sci. École Norm. Sup. (4), 17 (1984), 333.

[1]

Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399

[2]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[3]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[4]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[5]

Krzysztof Frączek. Polynomial growth of the derivative for diffeomorphisms on tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 489-516. doi: 10.3934/dcds.2004.11.489

[6]

S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30.

[7]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[8]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[9]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[10]

Hongnian Huang. On the extension and smoothing of the Calabi flow on complex tori. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6153-6164. doi: 10.3934/dcds.2017265

[11]

Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343

[12]

Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553

[13]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[14]

Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645

[15]

Bastian Laubner, Dierk Schleicher, Vlad Vicol. A combinatorial classification of postsingularly finite complex exponential maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 663-682. doi: 10.3934/dcds.2008.22.663

[16]

Meiyu Su. True laminations for complex Hènon maps. Conference Publications, 2003, 2003 (Special) : 834-841. doi: 10.3934/proc.2003.2003.834

[17]

Roland Gunesch, Philipp Kunde. Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1615-1655. doi: 10.3934/dcds.2018067

[18]

Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255

[19]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[20]

Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]