2014, 8(2): 251-270. doi: 10.3934/jmd.2014.8.251

Every action of a nonamenable group is the factor of a small action

1. 

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States

Received  December 2013 Published  November 2014

It is well known that if $G$ is a countable amenable group and $G ↷ (Y, \nu)$ factors onto $G ↷ (X, \mu)$, then the entropy of the first action must be at least the entropy of the second action. In particular, if $G ↷ (X, \mu)$ has infinite entropy, then the action $G ↷ (Y, \nu)$ does not admit any finite generating partition. On the other hand, we prove that if $G$ is a countable nonamenable group then there exists a finite integer $n$ with the following property: for every probability-measure-preserving action $G ↷ (X, \mu)$ there is a $G$-invariant probability measure $\nu$ on $n^G$ such that $G ↷ (n^G, \nu)$ factors onto $G ↷ (X, \mu)$. For many nonamenable groups, $n$ can be chosen to be $4$ or smaller. We also obtain a similar result with respect to continuous actions on compact spaces and continuous factor maps.
Citation: Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251
References:
[1]

K. Ball, Factors of independent and identically distributed processes with non-amenable group actions,, Ergodic Theory Dynam. Systems, 25 (2005), 711. doi: 10.1017/S0143385704001063.

[2]

L. Bowen, A measure-conjugacy invariant for free group actions,, Ann. of Math. (2), 171 (2010), 1387. doi: 10.4007/annals.2010.171.1387.

[3]

L. Bowen, Weak isomorphisms between Bernoulli shifts,, Israel J. Math., 183 (2011), 93. doi: 10.1007/s11856-011-0043-3.

[4]

L. Bowen, Every countably infinite group is almost Ornstein,, in Dynamical Systems and Group Actions, (2012), 67. doi: 10.1090/conm/567/11234.

[5]

I. Epstein, Orbit inequivalent actions of non-amenable groups,, preprint, ().

[6]

D. Gaboriau, Coût des relations d'équivalance et des groupes,, Invent. Math., 139 (2000), 41. doi: 10.1007/s002229900019.

[7]

D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann's problem,, Invent. Math., 177 (2009), 533. doi: 10.1007/s00222-009-0187-5.

[8]

A. Kechris, Classical Descriptive Set Theory,, Graduate Texts in Mathematics, (1995). doi: 10.1007/978-1-4612-4190-4.

[9]

A. Kechris, Weak containment in the space of actions of a free group,, Israel J. Math., 189 (2012), 461. doi: 10.1007/s11856-011-0182-6.

[10]

D. Kerr and H. Li, Soficity, amenability, and dynamical entropy,, Amer. J. Math., 135 (2013), 721. doi: 10.1353/ajm.2013.0024.

[11]

D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups,, J. Analyse Math., 48 (1987), 1. doi: 10.1007/BF02790325.

[12]

B. Seward, Burnside's problem, spanning trees, and tilings,, to appear in Geometry & Topology., ().

[13]

J. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations,, Ann. Math. Logic, 18 (1980), 1. doi: 10.1016/0003-4843(80)90002-9.

[14]

A. M. Stepin, Bernoulli shifts on groups,, Dokl. Akad. Nauk SSSR, 223 (1975), 300.

[15]

B. Weiss, Measurable dynamics,, in Conference in Modern Analysis and Probability (eds. R. Beals, (1984), 395. doi: 10.1090/conm/026/737417.

[16]

K. Whyte, Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture,, Duke Math. J., 99 (1999), 93. doi: 10.1215/S0012-7094-99-09904-0.

show all references

References:
[1]

K. Ball, Factors of independent and identically distributed processes with non-amenable group actions,, Ergodic Theory Dynam. Systems, 25 (2005), 711. doi: 10.1017/S0143385704001063.

[2]

L. Bowen, A measure-conjugacy invariant for free group actions,, Ann. of Math. (2), 171 (2010), 1387. doi: 10.4007/annals.2010.171.1387.

[3]

L. Bowen, Weak isomorphisms between Bernoulli shifts,, Israel J. Math., 183 (2011), 93. doi: 10.1007/s11856-011-0043-3.

[4]

L. Bowen, Every countably infinite group is almost Ornstein,, in Dynamical Systems and Group Actions, (2012), 67. doi: 10.1090/conm/567/11234.

[5]

I. Epstein, Orbit inequivalent actions of non-amenable groups,, preprint, ().

[6]

D. Gaboriau, Coût des relations d'équivalance et des groupes,, Invent. Math., 139 (2000), 41. doi: 10.1007/s002229900019.

[7]

D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann's problem,, Invent. Math., 177 (2009), 533. doi: 10.1007/s00222-009-0187-5.

[8]

A. Kechris, Classical Descriptive Set Theory,, Graduate Texts in Mathematics, (1995). doi: 10.1007/978-1-4612-4190-4.

[9]

A. Kechris, Weak containment in the space of actions of a free group,, Israel J. Math., 189 (2012), 461. doi: 10.1007/s11856-011-0182-6.

[10]

D. Kerr and H. Li, Soficity, amenability, and dynamical entropy,, Amer. J. Math., 135 (2013), 721. doi: 10.1353/ajm.2013.0024.

[11]

D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups,, J. Analyse Math., 48 (1987), 1. doi: 10.1007/BF02790325.

[12]

B. Seward, Burnside's problem, spanning trees, and tilings,, to appear in Geometry & Topology., ().

[13]

J. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations,, Ann. Math. Logic, 18 (1980), 1. doi: 10.1016/0003-4843(80)90002-9.

[14]

A. M. Stepin, Bernoulli shifts on groups,, Dokl. Akad. Nauk SSSR, 223 (1975), 300.

[15]

B. Weiss, Measurable dynamics,, in Conference in Modern Analysis and Probability (eds. R. Beals, (1984), 395. doi: 10.1090/conm/026/737417.

[16]

K. Whyte, Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture,, Duke Math. J., 99 (1999), 93. doi: 10.1215/S0012-7094-99-09904-0.

[1]

Julia Piantadosi, Phil Howlett, Jonathan Borwein, John Henstridge. Maximum entropy methods for generating simulated rainfall. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 233-256. doi: 10.3934/naco.2012.2.233

[2]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[3]

Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257

[4]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[5]

Simone Vazzoler. A note on the normalization of generating functions. Journal of Geometric Mechanics, 2018, 10 (2) : 209-215. doi: 10.3934/jgm.2018008

[6]

Kamil Rajdl, Petr Lansky. Fano factor estimation. Mathematical Biosciences & Engineering, 2014, 11 (1) : 105-123. doi: 10.3934/mbe.2014.11.105

[7]

Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

[8]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[9]

Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229

[10]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[11]

Yilun Shang. Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks & Heterogeneous Media, 2014, 9 (3) : 553-573. doi: 10.3934/nhm.2014.9.553

[12]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[13]

H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361

[14]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[15]

Ryusuke Kon. Dynamics of competitive systems with a single common limiting factor. Mathematical Biosciences & Engineering, 2015, 12 (1) : 71-81. doi: 10.3934/mbe.2015.12.71

[16]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[17]

Yanming Ge. Analysis of airline seat control with region factor. Journal of Industrial & Management Optimization, 2012, 8 (2) : 363-378. doi: 10.3934/jimo.2012.8.363

[18]

Shaoyong Lai, Yulan Zhou. A stochastic optimal growth model with a depreciation factor. Journal of Industrial & Management Optimization, 2010, 6 (2) : 283-297. doi: 10.3934/jimo.2010.6.283

[19]

Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549

[20]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]