2012, 6(1): 79-120. doi: 10.3934/jmd.2012.6.79

Hölder foliations, revisited

1. 

Department ofMathematics, University of Chicago, 5734 S. University Ave., Chicago, Illinois 60637, United States, United States

2. 

CONICET, IMAS, Universidad de Buenos Aires, Buenos Aires, Argentina

Received  December 2011 Published  May 2012

We investigate transverse Hölder regularity of some canonical leaf conjugacies in normally hyperbolic dynamical systems and transverse Hölder regularity of some invariant foliations. Our results validate claims made elsewhere in the literature.
Citation: Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79
References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, (Russian), 90 (1967).

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Ph.D Thesis, (2011).

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475. doi: 10.1016/j.top.2004.10.009.

[4]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89. doi: 10.3934/dcds.2008.22.89.

[5]

P. Carrasco, "Compact Dynamical Foliations,", Ph.D Thesis, (2010).

[6]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", North-Holland Mathematical Library, (1975).

[7]

D. Chillingworth, unpublished,, circa 1970., (1970).

[8]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions,, Discrete Contin. Dyn. Syst., 13 (2005), 985. doi: 10.3934/dcds.2005.13.985.

[9]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n,\mathbbR)$/$Gamma$,, Int. Math. Res. Not. IMRN, 2011 (): 4405.

[10]

D. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265. doi: 10.5802/aif.607.

[11]

A. Hammerlindl, Quasi-isometry and plaque expansiveness,, Canadian Mathematical Bulletin, 54 (2011), 676. doi: 10.4153/CMB-2011-024-7.

[12]

B. Hasselblatt, Regularity of the Anosov splitting. II,, Ergodic Theory Dynam. Systems, 17 (1997), 169. doi: 10.1017/S0143385797069757.

[13]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations,, Ergodic Theory Dynam. Systems, 19 (1999), 643. doi: 10.1017/S0143385799133868.

[14]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.

[15]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).

[16]

Y. Ilyashenko and A. Negut, Hölder properties of perturbed skew products and Fubini regained,, preprint., ().

[17]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).

[18]

V. Niţică and A. Török, Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices,, Duke Math. J., 79 (1995), 751.

[19]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517. doi: 10.1215/S0012-7094-97-08616-6.

[20]

C. Pugh, M. Shub and A. Wilkinson, Correction to: "Hölder foliations,", Duke Math. J., 105 (2000), 105.

[21]

J. Schmeling and Ra. Siegmund-Schultze, Hölder-continuity of the holonomy maps for hyperbolic sets,, in, 1514 (1992), 174.

[22]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of Albert Fathi and Rémi Langevin, (1987).

[23]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. & Dynam. Sys., 18 (1998), 1545.

[24]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, preprint, (2008).

show all references

References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, (Russian), 90 (1967).

[2]

D. Bohnet, "Partially Hyperbolic Systems with a Compact Center Foliation with Finite Holonomy,", Ph.D Thesis, (2011).

[3]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475. doi: 10.1016/j.top.2004.10.009.

[4]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete Contin. Dyn. Syst., 22 (2008), 89. doi: 10.3934/dcds.2008.22.89.

[5]

P. Carrasco, "Compact Dynamical Foliations,", Ph.D Thesis, (2010).

[6]

J. Cheeger and D. Ebin, "Comparison Theorems in Riemannian Geometry,", North-Holland Mathematical Library, (1975).

[7]

D. Chillingworth, unpublished,, circa 1970., (1970).

[8]

D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions,, Discrete Contin. Dyn. Syst., 13 (2005), 985. doi: 10.3934/dcds.2005.13.985.

[9]

D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions. II. The geometric method and restrictions of Weyl chamber flows on $SL(n,\mathbbR)$/$Gamma$,, Int. Math. Res. Not. IMRN, 2011 (): 4405.

[10]

D. Epstein, Foliations with all leaves compact,, Ann. Inst. Fourier (Grenoble), 26 (1976), 265. doi: 10.5802/aif.607.

[11]

A. Hammerlindl, Quasi-isometry and plaque expansiveness,, Canadian Mathematical Bulletin, 54 (2011), 676. doi: 10.4153/CMB-2011-024-7.

[12]

B. Hasselblatt, Regularity of the Anosov splitting. II,, Ergodic Theory Dynam. Systems, 17 (1997), 169. doi: 10.1017/S0143385797069757.

[13]

B. Hasselblatt and A. Wilkinson, Prevalence of non-Lipschitz Anosov foliations,, Ergodic Theory Dynam. Systems, 19 (1999), 643. doi: 10.1017/S0143385799133868.

[14]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, in, 51 (2007), 35.

[15]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).

[16]

Y. Ilyashenko and A. Negut, Hölder properties of perturbed skew products and Fubini regained,, preprint., ().

[17]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995).

[18]

V. Niţică and A. Török, Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices,, Duke Math. J., 79 (1995), 751.

[19]

C. Pugh, M. Shub and A. Wilkinson, Hölder foliations,, Duke Math. J., 86 (1997), 517. doi: 10.1215/S0012-7094-97-08616-6.

[20]

C. Pugh, M. Shub and A. Wilkinson, Correction to: "Hölder foliations,", Duke Math. J., 105 (2000), 105.

[21]

J. Schmeling and Ra. Siegmund-Schultze, Hölder-continuity of the holonomy maps for hyperbolic sets,, in, 1514 (1992), 174.

[22]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of Albert Fathi and Rémi Langevin, (1987).

[23]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. & Dynam. Sys., 18 (1998), 1545.

[24]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms,, preprint, (2008).

[1]

Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

[2]

Boris Hasselblatt. Critical regularity of invariant foliations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931

[3]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[4]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[5]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[6]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[7]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[8]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[9]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[10]

Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641

[11]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[12]

Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55

[13]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[14]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[15]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[16]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[17]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

[18]

Radu Saghin. Note on homology of expanding foliations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[19]

Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140

[20]

Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]