2012, 6(2): 275-285. doi: 10.3934/jmd.2012.6.275

Spectral analysis of time changes of horocycle flows

1. 

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile

Received  February 2012 Published  August 2012

We prove (under the condition of A. G. Kushnirenko) that all time changes of the horocycle flow have purely absolutely continuous spectrum in the orthocomplement of the constant functions. This provides an answer to a question of A. Katok and J.-P. Thouvenot on the spectral nature of time changes of horocycle flows. Our proofs rely on positive commutator methods for self-adjoint operators.
Citation: Rafael Tiedra De Aldecoa. Spectral analysis of time changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 275-285. doi: 10.3934/jmd.2012.6.275
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", Second edition, (1978).

[2]

W. O. Amrein, Hilbert space methods in quantum mechanics. Fundamental Sciences,, EPFL Press, (2009).

[3]

W. O. Amrein, A. Boutet de Monveland and V. Georgescu, "$ C_0 $-Groups, Commutator Methods and Spectral Theory of $N$-Body Hamiltonians," Progress in Math., 135,, Birkhäuser Verlag, (1996).

[4]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time-changes of heisenberg nilflows,, J. Differential Geom., 89 (2011), 369.

[5]

H. Baumgärtel and M. Wollenberg, Mathematical scattering theory, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 59,, Akademie-Verlag, (1983).

[6]

M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group actions on homogeneous spaces, London Mathematical Society Lecture Note Series, 269,, Cambridge University Press, (2000).

[7]

A. Boutet de Monvel and V. Georgescu, The method of differential inequalities,, in, 12 (1991), 279.

[8]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, "Ergodic Theory," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren derMathematischen Wissenschaften [Fundamental Principles of MathematicalSciences], 245,, Springer-Verlag, (1982).

[9]

B. Fayad, Partially mixing and locally rank 1 smooth transformations and flows on the torus Td,$d $≥$ 3$,, J. London Math. Soc. (2), 64 (2001), 637.

[10]

B. Fayad, Smooth mixing flows with purely singular spectra,, Duke Math. J., 132 (2006), 371. doi: 10.1215/S0012-7094-06-13225-8.

[11]

B. Fayad, A. Katok and A. Windsor, Mixed spectrum reparameterizations of linear flows on $\mathbb T^2$,, Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary, 1 (2001), 521.

[12]

C. Fernández, S. Richard and R. Tiedra de Aldecoa, Commutator methods for unitary operators,, J. Spectr. Theory, ().

[13]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows,, preprint, ().

[14]

K. Gelfert and A. E. Motter, (Non)invariance of dynamical quantities for orbit equivalent flows,, Comm. Math. Phys., 300 (2010), 411. doi: 10.1007/s00220-010-1120-x.

[15]

G. A. Hedlund, Fuchsian groups and mixtures,, Ann. of Math. (2), 40 (1939), 370.

[16]

P. D. Humphries, Change of velocity in dynamical systems,, J. London Math. Soc. (2), 7 (1974), 747. doi: 10.1112/jlms/s2-7.4.747.

[17]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory,, in, (2006), 649. doi: 10.1016/S1874-575X(06)80036-6.

[18]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal,, Moscow Univ. Math. Bull., 29 (1974), 82.

[19]

B. Marcus, The horocycle flow is mixing of all degrees,, Invent. Math., 46 (1978), 201. doi: 10.1007/BF01390274.

[20]

É. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators,, Comm. Math. Phys., 78 (): 391. doi: 10.1007/BF01942331.

[21]

O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature,, Uspehi Matem. Nauk (N.S.), 8 (1953), 125.

[22]

W. Parry, "Topics in Ergodic Theory," Cambridge Tracts in Mathematics, 75,, Cambridge University Press, (1981).

[23]

J. Sahbani, The conjugate operator method for locally regular Hamiltonians,, J. Operator Theory, 38 (1997), 297.

[24]

H. Totoki, Time changes of flows,, Mem. Fac. Sci. Kyushu Univ. Ser. A, 20 (1966), 27. doi: 10.2206/kyushumfs.20.27.

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", Second edition, (1978).

[2]

W. O. Amrein, Hilbert space methods in quantum mechanics. Fundamental Sciences,, EPFL Press, (2009).

[3]

W. O. Amrein, A. Boutet de Monveland and V. Georgescu, "$ C_0 $-Groups, Commutator Methods and Spectral Theory of $N$-Body Hamiltonians," Progress in Math., 135,, Birkhäuser Verlag, (1996).

[4]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time-changes of heisenberg nilflows,, J. Differential Geom., 89 (2011), 369.

[5]

H. Baumgärtel and M. Wollenberg, Mathematical scattering theory, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 59,, Akademie-Verlag, (1983).

[6]

M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group actions on homogeneous spaces, London Mathematical Society Lecture Note Series, 269,, Cambridge University Press, (2000).

[7]

A. Boutet de Monvel and V. Georgescu, The method of differential inequalities,, in, 12 (1991), 279.

[8]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, "Ergodic Theory," Translated from the Russian by A. B. Sosinskiĭ, Grundlehren derMathematischen Wissenschaften [Fundamental Principles of MathematicalSciences], 245,, Springer-Verlag, (1982).

[9]

B. Fayad, Partially mixing and locally rank 1 smooth transformations and flows on the torus Td,$d $≥$ 3$,, J. London Math. Soc. (2), 64 (2001), 637.

[10]

B. Fayad, Smooth mixing flows with purely singular spectra,, Duke Math. J., 132 (2006), 371. doi: 10.1215/S0012-7094-06-13225-8.

[11]

B. Fayad, A. Katok and A. Windsor, Mixed spectrum reparameterizations of linear flows on $\mathbb T^2$,, Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary, 1 (2001), 521.

[12]

C. Fernández, S. Richard and R. Tiedra de Aldecoa, Commutator methods for unitary operators,, J. Spectr. Theory, ().

[13]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows,, preprint, ().

[14]

K. Gelfert and A. E. Motter, (Non)invariance of dynamical quantities for orbit equivalent flows,, Comm. Math. Phys., 300 (2010), 411. doi: 10.1007/s00220-010-1120-x.

[15]

G. A. Hedlund, Fuchsian groups and mixtures,, Ann. of Math. (2), 40 (1939), 370.

[16]

P. D. Humphries, Change of velocity in dynamical systems,, J. London Math. Soc. (2), 7 (1974), 747. doi: 10.1112/jlms/s2-7.4.747.

[17]

A. Katok and J.-P. Thouvenot, Spectral properties and combinatorial constructions in ergodic theory,, in, (2006), 649. doi: 10.1016/S1874-575X(06)80036-6.

[18]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal,, Moscow Univ. Math. Bull., 29 (1974), 82.

[19]

B. Marcus, The horocycle flow is mixing of all degrees,, Invent. Math., 46 (1978), 201. doi: 10.1007/BF01390274.

[20]

É. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators,, Comm. Math. Phys., 78 (): 391. doi: 10.1007/BF01942331.

[21]

O. S. Parasyuk, Flows of horocycles on surfaces of constant negative curvature,, Uspehi Matem. Nauk (N.S.), 8 (1953), 125.

[22]

W. Parry, "Topics in Ergodic Theory," Cambridge Tracts in Mathematics, 75,, Cambridge University Press, (1981).

[23]

J. Sahbani, The conjugate operator method for locally regular Hamiltonians,, J. Operator Theory, 38 (1997), 297.

[24]

H. Totoki, Time changes of flows,, Mem. Fac. Sci. Kyushu Univ. Ser. A, 20 (1966), 27. doi: 10.2206/kyushumfs.20.27.

[1]

Giovanni Forni, Corinna Ulcigrai. Time-changes of horocycle flows. Journal of Modern Dynamics, 2012, 6 (2) : 251-273. doi: 10.3934/jmd.2012.6.251

[2]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[3]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001

[4]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[5]

Reimund Rautmann. Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1101-1109. doi: 10.3934/dcdss.2014.7.1101

[6]

Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Corrigendum to "Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology". Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4585-4586. doi: 10.3934/dcds.2017196

[7]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[8]

Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991

[9]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[10]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[11]

Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing Ⅱ: Flocking. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239

[12]

Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems & Imaging, 2007, 1 (4) : 673-690. doi: 10.3934/ipi.2007.1.673

[13]

Dongping Zhuang. Irrational stable commutator length in finitely presented groups. Journal of Modern Dynamics, 2008, 2 (3) : 499-507. doi: 10.3934/jmd.2008.2.499

[14]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[15]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[16]

M. Pellicer, J. Solà-Morales. Spectral analysis and limit behaviours in a spring-mass system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 563-577. doi: 10.3934/cpaa.2008.7.563

[17]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[18]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[19]

Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005

[20]

Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]