2011, 5(1): 107-122. doi: 10.3934/jmd.2011.5.107

Integrability and Lyapunov exponents

1. 

Instituto Nacional deMatemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, Brazil

Received  April 2010 Revised  December 2010 Published  April 2011

A smooth distribution, invariant under a dynamical system, integrates to give an invariant foliation, unless certain resonance conditions are present.
Citation: Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107
References:
[1]

D. V. Anosov, "Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature,", Proceedings of the Steklov Institute of Mathematics, (1967).

[2]

L. Barriera and C. Valls, Center manifolds for nonuniformly partially hyperbolic diffeomorphisms,, Journal de Mathématiques Pures et Appliquées, 84 (2005), 1693. doi: 10.1016/j.matpur.2005.07.005.

[3]

M. Brin and Ja. Pesin, Partially hyperbolic dynamical systems,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.

[4]

K. Burns, F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center,, Discrete and Continuous Dynamical Systems, 22 (2008), 75. doi: 10.3934/dcds.2008.22.75.

[5]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete and Continuous Dynamical Systems, 22 (2008), 89. doi: 10.3934/dcds.2008.22.89.

[6]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Annals of Math., 171 (2010), 451.

[7]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds I: Manifolds associated to non-resonant subspaces,, Indiana Univ. Math. J., 52 (2003), 283. doi: 10.1512/iumj.2003.52.2245.

[8]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, Partially Hyperbolic Dynamics, (2007), 35.

[9]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353. doi: 10.1007/s00222-007-0100-z.

[10]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," volume 583 of "Lecture Notes in Mathematics," Vol. 583,, Springer-Verlag, (1977).

[11]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Translated from the Portuguese by Silvio Levy. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], (1987).

[12]

V. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.

[13]

V. Oseledets, Oseledets theorem,, Scholarpedia, 3 (2008). doi: 10.4249/scholarpedia.1846.

[14]

F. Rampazzo, Frobenius-type theorems for Lipschitz distributions,, Journal of Differential Equations, 243 (2007), 270. doi: 10.1016/j.jde.2007.05.040.

[15]

S. Simić, Lipschitz distributions and Anosov flows,, Proc. of the Amer. Math. Soc., 124 (1996), 1869. doi: 10.1090/S0002-9939-96-03423-5.

[16]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747. doi: 10.1090/S0002-9904-1967-11798-1.

[17]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. and Dynam. Sys., 18 (1998), 1545. doi: 10.1017/S0143385798117984.

show all references

References:
[1]

D. V. Anosov, "Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature,", Proceedings of the Steklov Institute of Mathematics, (1967).

[2]

L. Barriera and C. Valls, Center manifolds for nonuniformly partially hyperbolic diffeomorphisms,, Journal de Mathématiques Pures et Appliquées, 84 (2005), 1693. doi: 10.1016/j.matpur.2005.07.005.

[3]

M. Brin and Ja. Pesin, Partially hyperbolic dynamical systems,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170.

[4]

K. Burns, F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center,, Discrete and Continuous Dynamical Systems, 22 (2008), 75. doi: 10.3934/dcds.2008.22.75.

[5]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete and Continuous Dynamical Systems, 22 (2008), 89. doi: 10.3934/dcds.2008.22.89.

[6]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Annals of Math., 171 (2010), 451.

[7]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds I: Manifolds associated to non-resonant subspaces,, Indiana Univ. Math. J., 52 (2003), 283. doi: 10.1512/iumj.2003.52.2245.

[8]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics,, Partially Hyperbolic Dynamics, (2007), 35.

[9]

F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353. doi: 10.1007/s00222-007-0100-z.

[10]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," volume 583 of "Lecture Notes in Mathematics," Vol. 583,, Springer-Verlag, (1977).

[11]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Translated from the Portuguese by Silvio Levy. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], (1987).

[12]

V. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.

[13]

V. Oseledets, Oseledets theorem,, Scholarpedia, 3 (2008). doi: 10.4249/scholarpedia.1846.

[14]

F. Rampazzo, Frobenius-type theorems for Lipschitz distributions,, Journal of Differential Equations, 243 (2007), 270. doi: 10.1016/j.jde.2007.05.040.

[15]

S. Simić, Lipschitz distributions and Anosov flows,, Proc. of the Amer. Math. Soc., 124 (1996), 1869. doi: 10.1090/S0002-9939-96-03423-5.

[16]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747. doi: 10.1090/S0002-9904-1967-11798-1.

[17]

A. Wilkinson, Stable ergodicity of the time-one map of a geodesic flow,, Ergod. Th. and Dynam. Sys., 18 (1998), 1545. doi: 10.1017/S0143385798117984.

[1]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[2]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[3]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

[4]

Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287

[5]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[6]

Jianyu Chen. On essential coexistence of zero and nonzero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4149-4170. doi: 10.3934/dcds.2012.32.4149

[7]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[8]

Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3/4) : 549-576. doi: 10.3934/jmd.2014.8.549

[9]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[10]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

[11]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[12]

Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233

[13]

Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231

[14]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[15]

L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3/4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555

[16]

Lucas Backes. On the periodic approximation of Lyapunov exponents for semi-invertible cocycles. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6353-6368. doi: 10.3934/dcds.2017275

[17]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[18]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[19]

Nguyen Dinh Cong, Nguyen Thi Thuy Quynh. Coincidence of Lyapunov exponents and central exponents of linear Ito stochastic differential equations with nondegenerate stochastic term. Conference Publications, 2011, 2011 (Special) : 332-342. doi: 10.3934/proc.2011.2011.332

[20]

P. Kaplický, Dalibor Pražák. Lyapunov exponents and the dimension of the attractor for 2d shear-thinning incompressible flow. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 961-974. doi: 10.3934/dcds.2008.20.961

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]