2010, 4(4): 715-732. doi: 10.3934/jmd.2010.4.715

Infinite translation surfaces with infinitely generated Veech groups

1. 

LATP, case cour A, Faculté des sciences Saint Jérôme, Avenue Escadrille Normandie Niemen, 13397 Marseille cedex 20, France

2. 

Institute for Algebra and Geometry, University of Karlsruhe, 76128 Karlsruhe, Germany

Received  June 2010 Revised  September 2010 Published  January 2011

We study infinite translation surfaces which are $\ZZ$-covers of finite square-tiled surfaces obtained by a certain two-slit cut and paste construction. We show that if the finite translation surface has a one-cylinder decomposition in some direction, then the Veech group of the infinite translation surface is either a lattice or an infinitely generated group of the first kind. The square-tiled surfaces of genus two with one zero provide examples for finite translation surfaces that fulfill the prerequisites of the theorem.
Citation: Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715
References:
[1]

J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009).

[2]

R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319. doi: 10.1007/BF01673500.

[3]

R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123.

[4]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191. doi: 10.1215/S0012-7094-00-10321-3.

[5]

F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133.

[6]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007).

[7]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009).

[8]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281. doi: 10.1007/BF02777365.

[9]

P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47.

[10]

P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49. doi: 10.1215/S0012-7094-04-12312-8.

[11]

P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008).

[12]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[13]

S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007).

[14]

C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191. doi: 10.1007/BF02392964.

[15]

P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., ().

[16]

G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005).

[17]

G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459.

[18]

G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193.

[19]

G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31.

[20]

F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255.

[21]

F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009).

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553. doi: 10.1007/BF01388890.

show all references

References:
[1]

J. Bowman, "Flat Structures and Complex Structures in Teichmüller Theory,", Thesis (Ph.D.)–Cornell University. ProQuest LLC, (2009).

[2]

R. G. Burns and A. M. Brunner, Two remarks on the group property of Howson,, Algebra Logic, 18 (1980), 319. doi: 10.1007/BF01673500.

[3]

R. Chamanara, Affine automorphism groups of surfaces of infinite type,, In the tradition of Ahlfors and Bers, (2004), 123.

[4]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191. doi: 10.1215/S0012-7094-00-10321-3.

[5]

F. Herrlich, Teichmüller curves defined by characteristic origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 133.

[6]

W. P. Hooper, Dynamics on an infinite surface with the lattice property,, (2007) preprint, (2007).

[7]

W. P. Hooper and B. Weiss, Generalized staircases: Recurrence and symmetry,, to appear in Annales de L'Institut Fourier (2009)., (2009).

[8]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $H(2)$,, Israel J. Math., 151 (2006), 281. doi: 10.1007/BF02777365.

[9]

P. Hubert and S. Lelièvre, Noncongruence subgroups in $H(2)$,, Int. Math. Res. Not., (2005), 47.

[10]

P. Hubert and T. Schmidt, Infinitely generated Veech groups,, Duke Math. J., 123 (2004), 49. doi: 10.1215/S0012-7094-04-12312-8.

[11]

P. Hubert and B. Weiss, Dynamics on the infinite staircase,, (2008) preprint., (2008).

[12]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[13]

S. Lelièvre and R. Silhol, Multi-geodesic tessellations, fractional Dehn twists and uniformization of algebraic curves,, (2007) preprint, (2007).

[14]

C. McMullen, Teichmüller geodesics of infinite complexity,, Acta Math., 191 (2003), 191. doi: 10.1007/BF02392964.

[15]

P. Przytycki, G. Schmithüsen and F. Valdez, Veech groups of Loch Ness monsters,, to appear in Annales de l'Institut Fourier., ().

[16]

G. Schmithüsen, "Veech Groups of Origamis,", Dissertation 2005, (2005).

[17]

G. Schmithüsen, An algorithm for finding the Veech group of an origami,, Experiment. Math., 13 (2004), 459.

[18]

G. Schmithüsen, Examples for Veech groups of origamis,, The geometry of Riemann surfaces and abelian varieties, (2006), 193.

[19]

G. Schmithüsen, Origamis with non-congruence Veech groups,, Proceedings of 34th Symposium on Transformation Groups, (2007), 31.

[20]

F. Valdez, Billiards in polygons and homogeneous foliations on $\CC^2$,, Ergod. Th. & Dynam. Sys., 29 (2009), 255.

[21]

F. Valdez, Veech groups, irrational billiards and stable abelian differentials,, Preprint 2009, (2009).

[22]

W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553. doi: 10.1007/BF01388890.

[1]

Ferrán Valdez. Veech groups, irrational billiards and stable abelian differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1055-1063. doi: 10.3934/dcds.2012.32.1055

[2]

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477

[3]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[4]

Pierre Arnoux, Thomas A. Schmidt. Veech surfaces with nonperiodic directions in the trace field. Journal of Modern Dynamics, 2009, 3 (4) : 611-629. doi: 10.3934/jmd.2009.3.611

[5]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[6]

Eugene Gutkin. Insecure configurations in lattice translation surfaces, with applications to polygonal billiards. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 367-382. doi: 10.3934/dcds.2006.16.367

[7]

Nancy Guelman, Isabelle Liousse. Actions of Baumslag-Solitar groups on surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1945-1964. doi: 10.3934/dcds.2013.33.1945

[8]

Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817

[9]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[10]

Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333

[11]

Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup. Dicritical nilpotent holomorphic foliations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3223-3237. doi: 10.3934/dcds.2018140

[12]

Dae San Kim. Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups. Advances in Mathematics of Communications, 2009, 3 (2) : 167-178. doi: 10.3934/amc.2009.3.167

[13]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[14]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[15]

Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537

[16]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[17]

Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847

[18]

Marco Abate, Francesca Tovena. Formal normal forms for holomorphic maps tangent to the identity. Conference Publications, 2005, 2005 (Special) : 1-10. doi: 10.3934/proc.2005.2005.1

[19]

Marco Abate, Jasmin Raissy. Formal Poincaré-Dulac renormalization for holomorphic germs. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1773-1807. doi: 10.3934/dcds.2013.33.1773

[20]

Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]