doi: 10.3934/jimo.2018200

An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints

1. 

School of Mathematics and Statistics, Central South University, Changsha, 410083, China

2. 

Hunan University of Commerce, Shool of Computer and Information Engineering, Changsha, 410205, China

* Corresponding author: Zhong Wan

Received  June 2017 Revised  September 2017 Published  December 2018

Fund Project: All the three authors are supported by the National Science Foundation of China (Grant No. 71671190)

Vehicle routing problem (VRP) is a typical and important combinatorial optimization problem, and is often involved with complicated temporal and spatial constraints in practice. In this paper, the VRP is formulated as an optimization model for minimizing the number of vehicles and the total transportation cost subject to constraints on loading plan, service time and weight capacity. The transportation cost consists of the rent charge of vehicles, fuel cost, and carbon tax. Owing to complexity of the built model, it is divided into two subproblems by a two-stage optimization approach: at the first stage, the number of vehicles is minimized, then the routing plan is optimized at the second stage. For solving the sequential subproblems, two correlated genetic algorithms are developed, which share the same initial population to reduce their computational costs. Numerical results indicate that the developed algorithms are efficient, and a number of important managerial insights are revealed from the model.

Citation: Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018200
References:
[1]

R. Akcelik and M. Besley, Operating cost, fuel consumption, and emission models in aaSIDRA and aaMOTION, 25th Conference of Australian Institutes of Transport Research (CAITR 2003), 2003 (2003), 1-15.

[2]

J. P. ArnaoutG. Arnaout and J. EIKhoury, Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem, Journal of Industrial and Management Optimization, 12 (2016), 1215-1225. doi: 10.3934/jimo.2016.12.1215.

[3]

R. BaldacciN. Christofides and A. Mingozzi, An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts, Mathematical Programming, 115 (2008), 351-385. doi: 10.1007/s10107-007-0178-5.

[4]

M. Barth and K. Boriboonsomsin, Real-world carbon dioxide impacts of traffic congestion, Transportation Research Record: Journal of the Transportation Research Board, 2058 (2008), 163-171.

[5]

T. Bektas and G. Laporte, The pollution-routing problem, Transportation Research Part B: Methodological, 45 (2011), 1232-1250.

[6]

J. F. Cordeau, G. Laporte, M. W. P. Savelsbergh, et al. Vehicle routing, Transportation, Handbooks in Operations Research and Management Science, 14 (2006), 367-428.

[7]

G. B. Dantzig and J. H. Ramser, The truck dispatching problem, Management Science, 6 (1959), 80-91. doi: 10.1287/mnsc.6.1.80.

[8]

J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, Mich., 1975

[9]

J. Homberger and H. Gehring, Two evolutionary metaheuristics for the vehicle routing problem with time windows, INFOR: Information Systems and Operational Research, 37 (1999), 297-318.

[10]

J. Homberger and H. Gehring, A two-phase hybrid metaheuristic for the vehicle routing problem with time windows, European Journal of Operational Research, 162 (2005), 220-238.

[11]

S. Huang and Z. Wan, A new nonmonotone spectral residual method for nonsmooth nonlinear equations, Journal of Computational and Applied Mathematics, 313 (2017), 82-101. doi: 10.1016/j.cam.2016.09.014.

[12]

S. HuangZ. Wan and X. H. Chen, A new nonmonotone line search technique for unconstrained optimization, Numerical Algorithms, 68 (2015), 671-689. doi: 10.1007/s11075-014-9866-4.

[13]

S. HuangZ. Wan and J. Zhang, An extended nonmonotone line search technique for large-scale unconstrained optimization, Journal of Computational and Applied Mathematics, 330 (2018), 586-604. doi: 10.1016/j.cam.2017.09.026.

[14]

O. JabaliT. Woensel and A. G. de Kok, Analysis of travel times and CO$_2$ emissions in time-dependent vehicle routing, Production and Operations Management, 21 (2012), 1060-1074.

[15]

I. Kara, B. Y. Kara and M. K. Yetis, Energy minimizing vehicle routing problem, Combinatorial Optimization and Applications, Springer Berlin Heidelberg, 2007, 62-71. doi: 10.1007/978-3-540-73556-4_9.

[16]

M. Lai, H. Yang, S. Yang, et al., Cyber-physical logistics system-based vehicle routing optimization, Journal of Industrial and Management Optimization, 10 (2014), 701-715. doi: 10.3934/jimo.2014.10.701.

[17]

Y. X. Li and Z. Wan, Bi-level programming approach to optimal strategy for VMI problems under random demand, ANZIAM Journal, 59 (2017), 247-270, doi: 10.1017/S1446181117000384.

[18]

W. Liang WB. Çatay and R. Eglese, Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge, European Journal of Operational Research, 236 (2014), 915-923. doi: 10.1016/j.ejor.2013.10.044.

[19]

W. Liang and R. Eglese, Minimum cost VRP with time-dependent speed data and congestion charge, Computers and Operations Research, 56 (2015), 41-50. doi: 10.1016/j.cor.2014.10.007.

[20]

W. MadenR. Eglese and D. Black, Vehicle routing and scheduling with time-varying data: A case study, Journal of the Operational Research Society, 61 (2010), 515-522.

[21]

M. Maiti M, S. Maity and A. Roy, An improved genetic algorithm and its application in constrained solid TSP in uncertain environments. Facets of Uncertainties and Applications, Springer, New Delhi, 2015,177-200.

[22]

D. Männel and A. Bortfeldt, A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints, European Journal of Operational Research, 254 (2016), 840-858. doi: 10.1016/j.ejor.2016.04.016.

[23]

E. MardanehR. LoxtonQ. Lin and P. Schmidli, A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations, Journal of Industrial and Management Optimization, 13 (2017), 1601-1623. doi: 10.3934/jimo.2017009.

[24]

A. McKinnon, CO$-2$ emissions from freight transport: An analysis of UK data, Logistics Research Network-2007 Conference Global Supply Chains: Developing Skills, Capabilities and Networks, 2007.

[25]

A. McKinnon, M. Browne, A. Whiteing and M. Piecyk (Eds.), Green Logistics: Improving the environmental sustainability of logistics, Kogan Page Publishers, 2015 (2015), 215-228.

[26]

S. Mima and P. Criqui, The future of fuel cells in a long term inter-technology competition framework, The Economic Dynamics of Fuel Cell Technologies, Springer Berlin Heidelberg, 2003, 43–78.

[27]

D. M. Miranda and S. V. Conceic$\tilde{a}$o, The vehicle routing problem with hard time windows and stochastic travel and service time, Expert Systems with Applications, 64 (2016), 104-116.

[28]

A. Palmer, The Development of an Integrated Routing and Carbon Dioxide Emissions Model for Goods Vehicles, Ph.D. thesis, Cranfield University, School of Management, 2007.

[29]

C. Prins, A simple and effective evolutionary algorithm for the vehicle routing problem, Computers and Operations Research, 31 (2004), 1985-2002. doi: 10.1016/S0305-0548(03)00158-8.

[30]

C. Schreyer, C. Schneider, M. Maibach, et al. External Costs of Transport: Update Study, final report, Infras, 2004.

[31]

P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, Principles and Practice of Constraint Programming-CP98, Springer, Berlin Heidelberg, 1998,417–431.

[32]

S. R. ThangiahK. E. Nygard and J. P. L. Gideon, A genetic algorithm system for vehicle routing with time windows, Artificial Intelligence Applications, 1991. Proceedings., Seventh IEEE Conference on IEEE, 1 (1991), 322-328.

[33]

P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Society for Industrial and Applied Mathematics, 2014. doi: 10.1137/1.9781611973594.

[34]

X. ZhangS. Huang and Z. Wan, Optimal pricing and ordering in global supply chain management with constraints under random demand, Appl. Math. Modelling, 40 (2016), 10105-10130. doi: 10.1016/j.apm.2016.06.054.

[35]

X. Zhang, S. Huang and Z. Wan, Stochastic Programming Approach to Global Supply Chain Management Under Random Additive Demand, Operational Research, 2017. doi: 10.1007/s12351-016-0269-2.

show all references

References:
[1]

R. Akcelik and M. Besley, Operating cost, fuel consumption, and emission models in aaSIDRA and aaMOTION, 25th Conference of Australian Institutes of Transport Research (CAITR 2003), 2003 (2003), 1-15.

[2]

J. P. ArnaoutG. Arnaout and J. EIKhoury, Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem, Journal of Industrial and Management Optimization, 12 (2016), 1215-1225. doi: 10.3934/jimo.2016.12.1215.

[3]

R. BaldacciN. Christofides and A. Mingozzi, An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts, Mathematical Programming, 115 (2008), 351-385. doi: 10.1007/s10107-007-0178-5.

[4]

M. Barth and K. Boriboonsomsin, Real-world carbon dioxide impacts of traffic congestion, Transportation Research Record: Journal of the Transportation Research Board, 2058 (2008), 163-171.

[5]

T. Bektas and G. Laporte, The pollution-routing problem, Transportation Research Part B: Methodological, 45 (2011), 1232-1250.

[6]

J. F. Cordeau, G. Laporte, M. W. P. Savelsbergh, et al. Vehicle routing, Transportation, Handbooks in Operations Research and Management Science, 14 (2006), 367-428.

[7]

G. B. Dantzig and J. H. Ramser, The truck dispatching problem, Management Science, 6 (1959), 80-91. doi: 10.1287/mnsc.6.1.80.

[8]

J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, Mich., 1975

[9]

J. Homberger and H. Gehring, Two evolutionary metaheuristics for the vehicle routing problem with time windows, INFOR: Information Systems and Operational Research, 37 (1999), 297-318.

[10]

J. Homberger and H. Gehring, A two-phase hybrid metaheuristic for the vehicle routing problem with time windows, European Journal of Operational Research, 162 (2005), 220-238.

[11]

S. Huang and Z. Wan, A new nonmonotone spectral residual method for nonsmooth nonlinear equations, Journal of Computational and Applied Mathematics, 313 (2017), 82-101. doi: 10.1016/j.cam.2016.09.014.

[12]

S. HuangZ. Wan and X. H. Chen, A new nonmonotone line search technique for unconstrained optimization, Numerical Algorithms, 68 (2015), 671-689. doi: 10.1007/s11075-014-9866-4.

[13]

S. HuangZ. Wan and J. Zhang, An extended nonmonotone line search technique for large-scale unconstrained optimization, Journal of Computational and Applied Mathematics, 330 (2018), 586-604. doi: 10.1016/j.cam.2017.09.026.

[14]

O. JabaliT. Woensel and A. G. de Kok, Analysis of travel times and CO$_2$ emissions in time-dependent vehicle routing, Production and Operations Management, 21 (2012), 1060-1074.

[15]

I. Kara, B. Y. Kara and M. K. Yetis, Energy minimizing vehicle routing problem, Combinatorial Optimization and Applications, Springer Berlin Heidelberg, 2007, 62-71. doi: 10.1007/978-3-540-73556-4_9.

[16]

M. Lai, H. Yang, S. Yang, et al., Cyber-physical logistics system-based vehicle routing optimization, Journal of Industrial and Management Optimization, 10 (2014), 701-715. doi: 10.3934/jimo.2014.10.701.

[17]

Y. X. Li and Z. Wan, Bi-level programming approach to optimal strategy for VMI problems under random demand, ANZIAM Journal, 59 (2017), 247-270, doi: 10.1017/S1446181117000384.

[18]

W. Liang WB. Çatay and R. Eglese, Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge, European Journal of Operational Research, 236 (2014), 915-923. doi: 10.1016/j.ejor.2013.10.044.

[19]

W. Liang and R. Eglese, Minimum cost VRP with time-dependent speed data and congestion charge, Computers and Operations Research, 56 (2015), 41-50. doi: 10.1016/j.cor.2014.10.007.

[20]

W. MadenR. Eglese and D. Black, Vehicle routing and scheduling with time-varying data: A case study, Journal of the Operational Research Society, 61 (2010), 515-522.

[21]

M. Maiti M, S. Maity and A. Roy, An improved genetic algorithm and its application in constrained solid TSP in uncertain environments. Facets of Uncertainties and Applications, Springer, New Delhi, 2015,177-200.

[22]

D. Männel and A. Bortfeldt, A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints, European Journal of Operational Research, 254 (2016), 840-858. doi: 10.1016/j.ejor.2016.04.016.

[23]

E. MardanehR. LoxtonQ. Lin and P. Schmidli, A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations, Journal of Industrial and Management Optimization, 13 (2017), 1601-1623. doi: 10.3934/jimo.2017009.

[24]

A. McKinnon, CO$-2$ emissions from freight transport: An analysis of UK data, Logistics Research Network-2007 Conference Global Supply Chains: Developing Skills, Capabilities and Networks, 2007.

[25]

A. McKinnon, M. Browne, A. Whiteing and M. Piecyk (Eds.), Green Logistics: Improving the environmental sustainability of logistics, Kogan Page Publishers, 2015 (2015), 215-228.

[26]

S. Mima and P. Criqui, The future of fuel cells in a long term inter-technology competition framework, The Economic Dynamics of Fuel Cell Technologies, Springer Berlin Heidelberg, 2003, 43–78.

[27]

D. M. Miranda and S. V. Conceic$\tilde{a}$o, The vehicle routing problem with hard time windows and stochastic travel and service time, Expert Systems with Applications, 64 (2016), 104-116.

[28]

A. Palmer, The Development of an Integrated Routing and Carbon Dioxide Emissions Model for Goods Vehicles, Ph.D. thesis, Cranfield University, School of Management, 2007.

[29]

C. Prins, A simple and effective evolutionary algorithm for the vehicle routing problem, Computers and Operations Research, 31 (2004), 1985-2002. doi: 10.1016/S0305-0548(03)00158-8.

[30]

C. Schreyer, C. Schneider, M. Maibach, et al. External Costs of Transport: Update Study, final report, Infras, 2004.

[31]

P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, Principles and Practice of Constraint Programming-CP98, Springer, Berlin Heidelberg, 1998,417–431.

[32]

S. R. ThangiahK. E. Nygard and J. P. L. Gideon, A genetic algorithm system for vehicle routing with time windows, Artificial Intelligence Applications, 1991. Proceedings., Seventh IEEE Conference on IEEE, 1 (1991), 322-328.

[33]

P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Society for Industrial and Applied Mathematics, 2014. doi: 10.1137/1.9781611973594.

[34]

X. ZhangS. Huang and Z. Wan, Optimal pricing and ordering in global supply chain management with constraints under random demand, Appl. Math. Modelling, 40 (2016), 10105-10130. doi: 10.1016/j.apm.2016.06.054.

[35]

X. Zhang, S. Huang and Z. Wan, Stochastic Programming Approach to Global Supply Chain Management Under Random Additive Demand, Operational Research, 2017. doi: 10.1007/s12351-016-0269-2.

Figure 1.  Example of crossover
Figure 2.  Minimal total costs by Algorithm 5
Figure 3.  Sensitivity analysis on speed of vehicles
Table 1.  Numerical results in case study
NC MVN $v$ TD TPV WTV VC TFC TCE TC CPU
1 19 6 50 1544.2 5.14 0.33 600 1160.5 7.09 1767.6 68.5
2 39 10 50 2208.7 3.40 0.28 1000 1654.2 10.1 2664.3 79.4
3 59 19 50 4368.9 4.60 0.32 1900 3145.7 19.2 5064.9 92.9
4 79 26 50 6070.6 4.66 0.32 2600 4379.8 26.8 7006.6 125.7
5 99 35 50 8636.1 4.93 0.27 3500 6133.3 37.5 9670.8 163.0
6 119 38 50 9743.4 5.12 0.25 3800 6970.8 42.6 10813.4 219.3
7 139 45 50 11470.4 5.09 0.43 4500 8213.9 50.2 12764.1 244.3
8 159 49 50 13913.2 5.68 0.44 4900 9938.1 60.8 14898.9 259.0
9 179 60 50 14883.3 4.96 0.50 6000 10673.7 65.3 16739.0 274.4
10 199 71 50 17599.0 4.96 0.62 7100 12544.3 76.7 19721.0 309.7
NC MVN $v$ TD TPV WTV VC TFC TCE TC CPU
1 19 6 50 1544.2 5.14 0.33 600 1160.5 7.09 1767.6 68.5
2 39 10 50 2208.7 3.40 0.28 1000 1654.2 10.1 2664.3 79.4
3 59 19 50 4368.9 4.60 0.32 1900 3145.7 19.2 5064.9 92.9
4 79 26 50 6070.6 4.66 0.32 2600 4379.8 26.8 7006.6 125.7
5 99 35 50 8636.1 4.93 0.27 3500 6133.3 37.5 9670.8 163.0
6 119 38 50 9743.4 5.12 0.25 3800 6970.8 42.6 10813.4 219.3
7 139 45 50 11470.4 5.09 0.43 4500 8213.9 50.2 12764.1 244.3
8 159 49 50 13913.2 5.68 0.44 4900 9938.1 60.8 14898.9 259.0
9 179 60 50 14883.3 4.96 0.50 6000 10673.7 65.3 16739.0 274.4
10 199 71 50 17599.0 4.96 0.62 7100 12544.3 76.7 19721.0 309.7
Table 2.  Routes of all the vehicles in the case $n = 19$
LV LNC DT AT WT LW LL DD TFC TCEt
1 0 9:00 - - - - - - -
6 12:08 11:48 20 0.32 1.12 130.2 86.6 0.53
4 13:32 13:32 0 0.18 0.48 59.0 38.3 0.23
0 - 15:20 - 0 0 1654.2 50.2 0.31
2 0 9:00 - - - - - - -
5 10:19 10:19 0 1.26 0.52 56.4 43.7 0.27
1 11:20 11:20 0 1.05 0.31 40.8 30.6 0.19
10 13:29 12:28 61 0.59 0.05 46.0 32.0 0.20
0 - 14:24 - 0 0 1654.2 22.6 0.14
3 0 9:00 - - - - - - -
9 11:54 11:54 0 2.57 1.62 135.3 125.7 0.77
17 13:11 13:10 0 1.91 1.35 53.7 45.7 0.28
7 14:35 14:35 0 1.00 0.64 60.5 45.0 0.28
0 - 15:13 0 0 0 1654.2 13.5 0.08
4 0 9:00 - - - - - - -
2 10:57 10:37 20 1.14 1.47 71.1 54.1 0.33
13 13:07 12:07 60 0.91 0.97 48.4 35.5 0.22
19 14:22 14:22 0 0.38 0.42 51.8 34.8 0.21
0 - 15:19 - 0 0 37.7 23.6 0.14
5 0 9:00 - - - - - - -
18 11:55 11:15 39 2.31 2.03 120.9 92.4 0.57
3 12:53 12:53 0 1.93 1.81 38.2 32.6 0.20
12 13:44 13:44 0 1.28 1.54 33.2 25.9 0.16
16 14:23 14:23 0 0.85 0.60 22.4 16.3 0.10
0 - 15:11 - 0 0 29.7 18.6 0.11
6 0 9:00 - - - - - - -
15 11:30 11:30 0 1.98 2.58 115.3 99.1 0.61
8 13:03 13:03 0 1.74 1.82 67.2 55.9 0.35
11 14:14 14:14 0 0.92 0.82 49.5 36.4 0.22
14 15:55 15:55 0 0.33 0.55 73.6 49.0 0.30
0 - 16:48 0 0 0 83.8 52.5 0.32
LV LNC DT AT WT LW LL DD TFC TCEt
1 0 9:00 - - - - - - -
6 12:08 11:48 20 0.32 1.12 130.2 86.6 0.53
4 13:32 13:32 0 0.18 0.48 59.0 38.3 0.23
0 - 15:20 - 0 0 1654.2 50.2 0.31
2 0 9:00 - - - - - - -
5 10:19 10:19 0 1.26 0.52 56.4 43.7 0.27
1 11:20 11:20 0 1.05 0.31 40.8 30.6 0.19
10 13:29 12:28 61 0.59 0.05 46.0 32.0 0.20
0 - 14:24 - 0 0 1654.2 22.6 0.14
3 0 9:00 - - - - - - -
9 11:54 11:54 0 2.57 1.62 135.3 125.7 0.77
17 13:11 13:10 0 1.91 1.35 53.7 45.7 0.28
7 14:35 14:35 0 1.00 0.64 60.5 45.0 0.28
0 - 15:13 0 0 0 1654.2 13.5 0.08
4 0 9:00 - - - - - - -
2 10:57 10:37 20 1.14 1.47 71.1 54.1 0.33
13 13:07 12:07 60 0.91 0.97 48.4 35.5 0.22
19 14:22 14:22 0 0.38 0.42 51.8 34.8 0.21
0 - 15:19 - 0 0 37.7 23.6 0.14
5 0 9:00 - - - - - - -
18 11:55 11:15 39 2.31 2.03 120.9 92.4 0.57
3 12:53 12:53 0 1.93 1.81 38.2 32.6 0.20
12 13:44 13:44 0 1.28 1.54 33.2 25.9 0.16
16 14:23 14:23 0 0.85 0.60 22.4 16.3 0.10
0 - 15:11 - 0 0 29.7 18.6 0.11
6 0 9:00 - - - - - - -
15 11:30 11:30 0 1.98 2.58 115.3 99.1 0.61
8 13:03 13:03 0 1.74 1.82 67.2 55.9 0.35
11 14:14 14:14 0 0.92 0.82 49.5 36.4 0.22
14 15:55 15:55 0 0.33 0.55 73.6 49.0 0.30
0 - 16:48 0 0 0 83.8 52.5 0.32
Table 3.  Comparison of the optimal costs by different models
Case NC TD TFC TCE CPU
Test1$^a$ 20 1544.2 1160.5 7.1 68.5
Test1$^b$ 20 1442.2 1214.1 7.5 102.8
Test2$^a$ 40 2208.7 1654.2 10.1 79.4
Test2$^b$ 40 2304.6 1815.2 11.1 111.2
Test3$^a$ 60 4368.9 3145.7 19.2 92.9
Test3$^b$ 60 4262.7 3351.5 20.5 148.6
Test4$^a$ 80 6070.6 4379.8 26.8 125.7
Test4$^b$ 80 6118.4 4811.0 29.4 188.6
Test5$^a$ 100 8636.1 6133.3 37.5 163.0
Test5$^b$ 100 8288.8 6517.7 39.8 252.7
Test6$^a$ 120 9743.4 6970.8 42.6 219.3
Test6$^b$ 120 9758.8 7693.3 46.9 346.5
Test7$^a$ 140 11470.4 8213.9 50.2 244.3
Test7$^b$ 140 11853.7 9320.9 57.0 359.1
Test8$^a$ 160 13913.2 9938.1 60.8 259.0
Test8$^b$ 160 13011.9 10230.9 62.5 383.3
Test9$^a$ 180 14883.3 10673.7 65.3 274.4
Test9$^b$ 180 15488.2 12178.9 74.4 466.5
Test10$^a$ 200 17599.0 12544.3 76.7 309.7
Test10$^b$ 200 17378.1 13664.8 83.5 526.5
Case NC TD TFC TCE CPU
Test1$^a$ 20 1544.2 1160.5 7.1 68.5
Test1$^b$ 20 1442.2 1214.1 7.5 102.8
Test2$^a$ 40 2208.7 1654.2 10.1 79.4
Test2$^b$ 40 2304.6 1815.2 11.1 111.2
Test3$^a$ 60 4368.9 3145.7 19.2 92.9
Test3$^b$ 60 4262.7 3351.5 20.5 148.6
Test4$^a$ 80 6070.6 4379.8 26.8 125.7
Test4$^b$ 80 6118.4 4811.0 29.4 188.6
Test5$^a$ 100 8636.1 6133.3 37.5 163.0
Test5$^b$ 100 8288.8 6517.7 39.8 252.7
Test6$^a$ 120 9743.4 6970.8 42.6 219.3
Test6$^b$ 120 9758.8 7693.3 46.9 346.5
Test7$^a$ 140 11470.4 8213.9 50.2 244.3
Test7$^b$ 140 11853.7 9320.9 57.0 359.1
Test8$^a$ 160 13913.2 9938.1 60.8 259.0
Test8$^b$ 160 13011.9 10230.9 62.5 383.3
Test9$^a$ 180 14883.3 10673.7 65.3 274.4
Test9$^b$ 180 15488.2 12178.9 74.4 466.5
Test10$^a$ 200 17599.0 12544.3 76.7 309.7
Test10$^b$ 200 17378.1 13664.8 83.5 526.5
Table 4.  Vehicle parameters
V VC VL VW VH WV VP $LC$
V1 Light 4.0 1.9 2.3 2.6 3 100
V2 Light 6.2 2 2 3.5 5 150
V3 Medium 9.6 2.3 2.7 25 25 300
V4 Medium 12.0 2.4 2.7 28 28 400
V5 Heavy 17.5 2.4 2.7 35 35 500
V VC VL VW VH WV VP $LC$
V1 Light 4.0 1.9 2.3 2.6 3 100
V2 Light 6.2 2 2 3.5 5 150
V3 Medium 9.6 2.3 2.7 25 25 300
V4 Medium 12.0 2.4 2.7 28 28 400
V5 Heavy 17.5 2.4 2.7 35 35 500
[1]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-26. doi: 10.3934/jimo.2018095

[2]

Mingyong Lai, Hongming Yang, Songping Yang, Junhua Zhao, Yan Xu. Cyber-physical logistics system-based vehicle routing optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 701-715. doi: 10.3934/jimo.2014.10.701

[3]

Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial & Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469

[4]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[5]

Sarah Ibri. An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management. Journal of Industrial & Management Optimization, 2015, 11 (1) : 41-63. doi: 10.3934/jimo.2015.11.41

[6]

Dmitri E. Kvasov, Yaroslav D. Sergeyev. Univariate geometric Lipschitz global optimization algorithms. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 69-90. doi: 10.3934/naco.2012.2.69

[7]

Ji Li, Tie Zhou. Numerical optimization algorithms for wavefront phase retrieval from multiple measurements. Inverse Problems & Imaging, 2017, 11 (4) : 721-743. doi: 10.3934/ipi.2017034

[8]

Xiaodi Bai, Xiaojin Zheng, Xiaoling Sun. A survey on probabilistically constrained optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 767-778. doi: 10.3934/naco.2012.2.767

[9]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[10]

Yaw Chang, Lin Chen. Solve the vehicle routing problem with time windows via a genetic algorithm. Conference Publications, 2007, 2007 (Special) : 240-249. doi: 10.3934/proc.2007.2007.240

[11]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[12]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial & Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[13]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018177

[14]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[15]

Jie Sun. On methods for solving nonlinear semidefinite optimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 1-14. doi: 10.3934/naco.2011.1.1

[16]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[17]

Juan Carlos López Alfonso, Giuseppe Buttazzo, Bosco García-Archilla, Miguel A. Herrero, Luis Núñez. A class of optimization problems in radiotherapy dosimetry planning. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1651-1672. doi: 10.3934/dcdsb.2012.17.1651

[18]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[19]

G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013

[20]

Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2018138

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]