doi: 10.3934/jimo.2018184

Upper bounds for Z$ _1 $-eigenvalues of generalized Hilbert tensors

School of Mathematics and Information Science, Henan Normal University, XinXiang HeNan, China

* Corresponding author: Yisheng Song

Received  March 2018 Revised  June 2018 Published  December 2018

Fund Project: The first author is supported by the National Natural Science Foundation of China (Grant No.11571095, 11601134, 11701154)

The Z$ _1 $-eigenvalue of tensors (hypermatrices) was widely used to discuss the properties of higher order Markov chains and transition probability tensors. In this paper, we extend the concept of Z$ _1 $-eigenvalue from finite-dimensional tensors to infinite-dimensional tensors, and discuss the upper bound of such eigenvalues for infinite-dimensional generalized Hilbert tensors. Furthermore, an upper bound of Z$ _1 $-eigenvalue for finite-dimensional generalized Hilbert tensor is obtained also.

Citation: Juan Meng, Yisheng Song. Upper bounds for Z$ _1 $-eigenvalues of generalized Hilbert tensors. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018184
References:
[1]

A. AlemanA. Montes-Rodriguez and A. Sarafoleanu, The eigenfunctions of the Hilbert matrix, Constr Approx., 36 (2012), 353-374. doi: 10.1007/s00365-012-9157-z.

[2]

K. C. ChangK. Pearson and T. Zhang, On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors, J. Math. Anal. Appl., 408 (2013), 525-540. doi: 10.1016/j.jmaa.2013.04.019.

[3]

K. C. ChangK. Pearson and T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182. doi: 10.1016/j.laa.2013.02.013.

[4]

K. C. ChangK. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520. doi: 10.4310/CMS.2008.v6.n2.a12.

[5]

H. Chen and L. Qi, Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors, J. Ind. Manag. Optim., 11 (2015), 1263-1274. doi: 10.3934/jimo.2015.11.1263.

[6]

H. Chen and Y. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China, 12 (2017), 1289-1302. doi: 10.1007/s11464-017-0645-0.

[7]

H. ChenL. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13 (2018), 255-276. doi: 10.1007/s11464-018-0681-4.

[8]

M. D. Choi, Tricks for treats with the hilbert matrix, Amer. Math. Monthly, 90 (1983), 301-312. doi: 10.1080/00029890.1983.11971218.

[9]

J. CulpK. Pearson and T. Zhang, On the uniqueness of the $Z_1$-eigenvector of transition probability tensors, Linear Multilinear Algebra, 65 (2017), 891-896. doi: 10.1080/03081087.2016.1211130.

[10]

H. Frazer, Note on Hilbert's Inequality, J. London Math. Soc., 21 (1946), 7-9. doi: 10.1112/jlms/s1-21.1.7.

[11]

J. He and T. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114. doi: 10.1016/j.aml.2014.07.012.

[12]

J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301.

[13]

J. He, Y. M. Liu, H. Ke, J. K. Tian and X. Li, Bounds for the $Z$-spectral radius of nonnegative tensors, SpringerPlus, 5 (2016), 1727.

[14]

D. Hilbert, Ein beitrag zur theorie des legendre'schen polynoms, Acta Mathematica, 18 (1894), 155-159. doi: 10.1007/BF02418278.

[15]

C. K. Hill, On the singly-infinite Hilbert matrix, J. London Math. Soc., 35 (1960), 17-29. doi: 10.1112/jlms/s1-35.1.17.

[16]

A. E. Ingham, A Note on Hilbert's Inequality, J. London Math. Soc., 11 (1936), 237-240. doi: 10.1112/jlms/s1-11.3.237.

[17]

T. Kato, On the hilbert matrix, Proc. American Math. Soc., 8 (1957), 73-81. doi: 10.1090/S0002-9939-1957-0083965-4.

[18]

W. LiD. Liu and S. W. Vong, $Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199. doi: 10.1016/j.laa.2015.05.033.

[19]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, 1st IEEE International workshop on computational advances of multi-tensor adaptive processing, 13/15 (2005), 129-132.

[20]

W. Magnus, On the spectrum of Hilbert's matrix, American J. Math., 72 (1950), 699-704. doi: 10.2307/2372284.

[21]

W. Mei and Y. Song, Infinite and finite dimensional generalized Hilbert tensors, Linear Algebra Appl., 532 (2017), 8-24. doi: 10.1016/j.laa.2017.05.052.

[22]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[23]

L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327. doi: 10.1016/j.jsc.2006.02.011.

[24]

L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238. doi: 10.1016/j.laa.2013.03.015.

[25]

L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition, Commun. Math. Sci., 13 (2015), 113-125. doi: 10.4310/CMS.2015.v13.n1.a6.

[26]

M. Rosenblum, On the Hilbert matrix Ⅰ, Proc.Am. Math. Soc., 9 (1958), 137-140. doi: 10.2307/2033411.

[27]

Y. Song and L. Qi, Infinite and finite dimensional Hilbert tensors, Linear Algebra Appl., 451 (2014), 1-14. doi: 10.1016/j.laa.2014.03.023.

[28]

Y. Song and L. Qi, Infinite dimensional Hilbert tensors on spaces of analytic functions, Commun. Math. Sci., 15 (2017), 1897-1911. doi: 10.4310/CMS.2017.v15.n7.a5.

[29]

Y. Song and L. Qi, Positive eigenvalue-eigenvector of nonlinear positive mappings, Front. Math. China, 9 (2014), 181-199. doi: 10.1007/s11464-013-0258-1.

[30]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM. J. Matrix Anal. Appl., 34 (2013), 1581-1595. doi: 10.1137/130909135.

[31]

Y. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63 (2015), 120-131. doi: 10.1080/03081087.2013.851198.

[32]

O. Taussky, A remark concerning the characteristic roots of the finite segments of the Hilbert matrix, Quarterly J. Math. Oxford ser., 20 (1949), 80-83. doi: 10.1093/qmath/os-20.1.80.

[33]

Y. WangK. Zhang and H. Sun, Criteria for strong H-tensors, Front. Math. China, 11 (2016), 577-592. doi: 10.1007/s11464-016-0525-z.

[34]

Y. WangG. Zhou and L. Caccetta, Nonsingular H-tensors and its criteria, J. Industr. Manag. Optim., 12 (2016), 1173-1186. doi: 10.3934/jimo.2016.12.1173.

[35]

Y. Wang; L. Caccetta and G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numerical Linear Algebra with Applications, 22 (2015), 1059-1076. doi: 10.1002/nla.1996.

[36]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589-601. doi: 10.1002/nla.633.

[37]

C. Xu, Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl., 491 (2016), 56-72. doi: 10.1016/j.laa.2015.02.012.

[38]

Q. Yang and Y. Yang, Further Results for Perron-Frobenius Theorem for Nonnegative Tensors Ⅱ, SIAM. J. Matrix Anal. Appl., 32 (2011), 1236-1250. doi: 10.1137/100813671.

[39]

Q. Yang and Y. Yang, Further Results for Perron-Frobenius Theorem for Nonnegative Tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517-2530. doi: 10.1137/090778766.

[40]

K. Zhang and Y. Wang, An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Compu. Appl. Math., 305 (2016), 1-10. doi: 10.1016/j.cam.2016.03.025.

show all references

References:
[1]

A. AlemanA. Montes-Rodriguez and A. Sarafoleanu, The eigenfunctions of the Hilbert matrix, Constr Approx., 36 (2012), 353-374. doi: 10.1007/s00365-012-9157-z.

[2]

K. C. ChangK. Pearson and T. Zhang, On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors, J. Math. Anal. Appl., 408 (2013), 525-540. doi: 10.1016/j.jmaa.2013.04.019.

[3]

K. C. ChangK. Pearson and T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182. doi: 10.1016/j.laa.2013.02.013.

[4]

K. C. ChangK. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520. doi: 10.4310/CMS.2008.v6.n2.a12.

[5]

H. Chen and L. Qi, Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors, J. Ind. Manag. Optim., 11 (2015), 1263-1274. doi: 10.3934/jimo.2015.11.1263.

[6]

H. Chen and Y. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China, 12 (2017), 1289-1302. doi: 10.1007/s11464-017-0645-0.

[7]

H. ChenL. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13 (2018), 255-276. doi: 10.1007/s11464-018-0681-4.

[8]

M. D. Choi, Tricks for treats with the hilbert matrix, Amer. Math. Monthly, 90 (1983), 301-312. doi: 10.1080/00029890.1983.11971218.

[9]

J. CulpK. Pearson and T. Zhang, On the uniqueness of the $Z_1$-eigenvector of transition probability tensors, Linear Multilinear Algebra, 65 (2017), 891-896. doi: 10.1080/03081087.2016.1211130.

[10]

H. Frazer, Note on Hilbert's Inequality, J. London Math. Soc., 21 (1946), 7-9. doi: 10.1112/jlms/s1-21.1.7.

[11]

J. He and T. Huang, Upper bound for the largest $Z$-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114. doi: 10.1016/j.aml.2014.07.012.

[12]

J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301.

[13]

J. He, Y. M. Liu, H. Ke, J. K. Tian and X. Li, Bounds for the $Z$-spectral radius of nonnegative tensors, SpringerPlus, 5 (2016), 1727.

[14]

D. Hilbert, Ein beitrag zur theorie des legendre'schen polynoms, Acta Mathematica, 18 (1894), 155-159. doi: 10.1007/BF02418278.

[15]

C. K. Hill, On the singly-infinite Hilbert matrix, J. London Math. Soc., 35 (1960), 17-29. doi: 10.1112/jlms/s1-35.1.17.

[16]

A. E. Ingham, A Note on Hilbert's Inequality, J. London Math. Soc., 11 (1936), 237-240. doi: 10.1112/jlms/s1-11.3.237.

[17]

T. Kato, On the hilbert matrix, Proc. American Math. Soc., 8 (1957), 73-81. doi: 10.1090/S0002-9939-1957-0083965-4.

[18]

W. LiD. Liu and S. W. Vong, $Z$-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199. doi: 10.1016/j.laa.2015.05.033.

[19]

L. H. Lim, Singular values and eigenvalues of tensors: A variational approach, 1st IEEE International workshop on computational advances of multi-tensor adaptive processing, 13/15 (2005), 129-132.

[20]

W. Magnus, On the spectrum of Hilbert's matrix, American J. Math., 72 (1950), 699-704. doi: 10.2307/2372284.

[21]

W. Mei and Y. Song, Infinite and finite dimensional generalized Hilbert tensors, Linear Algebra Appl., 532 (2017), 8-24. doi: 10.1016/j.laa.2017.05.052.

[22]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[23]

L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327. doi: 10.1016/j.jsc.2006.02.011.

[24]

L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238. doi: 10.1016/j.laa.2013.03.015.

[25]

L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition, Commun. Math. Sci., 13 (2015), 113-125. doi: 10.4310/CMS.2015.v13.n1.a6.

[26]

M. Rosenblum, On the Hilbert matrix Ⅰ, Proc.Am. Math. Soc., 9 (1958), 137-140. doi: 10.2307/2033411.

[27]

Y. Song and L. Qi, Infinite and finite dimensional Hilbert tensors, Linear Algebra Appl., 451 (2014), 1-14. doi: 10.1016/j.laa.2014.03.023.

[28]

Y. Song and L. Qi, Infinite dimensional Hilbert tensors on spaces of analytic functions, Commun. Math. Sci., 15 (2017), 1897-1911. doi: 10.4310/CMS.2017.v15.n7.a5.

[29]

Y. Song and L. Qi, Positive eigenvalue-eigenvector of nonlinear positive mappings, Front. Math. China, 9 (2014), 181-199. doi: 10.1007/s11464-013-0258-1.

[30]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM. J. Matrix Anal. Appl., 34 (2013), 1581-1595. doi: 10.1137/130909135.

[31]

Y. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63 (2015), 120-131. doi: 10.1080/03081087.2013.851198.

[32]

O. Taussky, A remark concerning the characteristic roots of the finite segments of the Hilbert matrix, Quarterly J. Math. Oxford ser., 20 (1949), 80-83. doi: 10.1093/qmath/os-20.1.80.

[33]

Y. WangK. Zhang and H. Sun, Criteria for strong H-tensors, Front. Math. China, 11 (2016), 577-592. doi: 10.1007/s11464-016-0525-z.

[34]

Y. WangG. Zhou and L. Caccetta, Nonsingular H-tensors and its criteria, J. Industr. Manag. Optim., 12 (2016), 1173-1186. doi: 10.3934/jimo.2016.12.1173.

[35]

Y. Wang; L. Caccetta and G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numerical Linear Algebra with Applications, 22 (2015), 1059-1076. doi: 10.1002/nla.1996.

[36]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589-601. doi: 10.1002/nla.633.

[37]

C. Xu, Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl., 491 (2016), 56-72. doi: 10.1016/j.laa.2015.02.012.

[38]

Q. Yang and Y. Yang, Further Results for Perron-Frobenius Theorem for Nonnegative Tensors Ⅱ, SIAM. J. Matrix Anal. Appl., 32 (2011), 1236-1250. doi: 10.1137/100813671.

[39]

Q. Yang and Y. Yang, Further Results for Perron-Frobenius Theorem for Nonnegative Tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517-2530. doi: 10.1137/090778766.

[40]

K. Zhang and Y. Wang, An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Compu. Appl. Math., 305 (2016), 1-10. doi: 10.1016/j.cam.2016.03.025.

[1]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[2]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[3]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

[4]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[5]

Ilesanmi Adeboye, Harrison Bray, David Constantine. Entropy rigidity and Hilbert volume. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1731-1744. doi: 10.3934/dcds.2019075

[6]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[7]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[8]

Daniel Alpay, Mihai Putinar, Victor Vinnikov. A Hilbert space approach to bounded analytic extension in the ball. Communications on Pure & Applied Analysis, 2003, 2 (2) : 139-145. doi: 10.3934/cpaa.2003.2.139

[9]

Gaven J. Martin. The Hilbert-Smith conjecture for quasiconformal actions. Electronic Research Announcements, 1999, 5: 66-70.

[10]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[11]

Gilberto Bini, Margarida Melo, Filippo Viviani. On GIT quotients of Hilbert and Chow schemes of curves. Electronic Research Announcements, 2012, 19: 33-40. doi: 10.3934/era.2012.19.33

[12]

Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure & Applied Analysis, 2008, 7 (4) : 837-844. doi: 10.3934/cpaa.2008.7.837

[13]

D. Novikov and S. Yakovenko. Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems. Electronic Research Announcements, 1999, 5: 55-65.

[14]

Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002

[15]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[16]

Giuseppe Da Prato, Franco Flandoli. Some results for pathwise uniqueness in Hilbert spaces. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1789-1797. doi: 10.3934/cpaa.2014.13.1789

[17]

Guangcun Lu. The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2939-2990. doi: 10.3934/dcds.2013.33.2939

[18]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

[19]

P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233

[20]

Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems & Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (11)
  • HTML views (103)
  • Cited by (0)

Other articles
by authors

[Back to Top]