• Previous Article
    Single-machine bi-criterion scheduling with release times and exponentially time-dependent learning effects
  • JIMO Home
  • This Issue
  • Next Article
    Recovering optimal solutions via SOC-SDP relaxation of trust region subproblem with nonintersecting linear constraints
doi: 10.3934/jimo.2018171

A new method for ranking decision making units using common set of weights: A developed criterion

Department of Mathematics, Faculty of Sciences, University of Qom, Alghadir Bld., Postal code:3716146611, Qom, Iran

* Corresponding author: Gholam Hassan Shirdel

Received  December 2016 Revised  June 2017 Published  October 2018

In this paper we have developed a new model by altering Liu and Peng's approach [20] toward ranking method using CSW. In fact, we have adopted a new criterion which is stronger in terms of maximizing efficiencies. After showing advantages of our model theoretically and illustrating it geometrically, two examples demonstrated how the proposed method is practically more capable.

Citation: Gholam Hassan Shirdel, Somayeh Ramezani-Tarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018171
References:
[1]

N. AdlerL. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context, Eur J Oper Res, 140 (2002), 249-265. doi: 10.1016/S0377-2217(02)00068-1.

[2]

N. AghayiM. Tavana and M. A. Raayatpanah, Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty, Eur J. Ind Eng, 10 (2016), 385-405. doi: 10.1504/EJIE.2016.076386.

[3]

A. Aldamak and S. Zolfaghari, Review of efficiency ranking methods in data envelopment analysis, Meas, 106 (2017), 161-172. doi: 10.1016/j.measurement.2017.04.028.

[4]

R. D. BankerA. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manage Sci, 30 (1984), 1031-1142. doi: 10.1287/mnsc.30.9.1078.

[5]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of DMUs, Eur J Oper Res, 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8.

[6]

C. I. ChiangM. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector, Math and Comput Model, 54 (2002), 2464-2470. doi: 10.1016/j.mcm.2011.06.002.

[7]

C. I. Chiang and G. H. Tzeng, A new efficiency measure for DEA: Efficiency achievement measure established on fuzzy multiple objectives programming, J Manage, 17 (2000), 369-388.

[8]

W. D. CookY. Roll and A. Kazakov, A DEA model for measuring the relative efficiency of highway maintenance patrols, Inform Syst Oper Res, 28 (1990), 113-124.

[9]

D. K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units, J Oper Res Soc, 53 (2002), 314-323. doi: 10.1057/palgrave.jors.2601253.

[10]

J. A. Ganley and S. A. Cubbin, Public Sector Efficiency Measurement: Applications of Data Envelopment Analysis, North-Holland, Amsterdam, 1992.

[11]

A. Hatami MarbiniM. TavanaP. J. AgrellF. Hosseinzadeh Lotfi and Z. Ghelej Beigi, A common-weights DEA model for centralized resource reduction and target setting, Comput Ind Eng, 79 (2015), 195-203.

[12]

F. Hosseinzadeh Lotfi, M. Rostamy-Malkhlifeh, G. R. Jahanshahloo, Z. Moghaddas, M. Khodabakhshi and M. Vaez-Ghasemi, A review of ranking models in data envelopment analysis, J Appl Math., 2013 (2013), Article ID: 492421, 20 pages.

[13]

C. K. HuF. B. Liu and C. F. Hu, Efficiency measures in fuzzy data envelopment analysis with common weights, J Ind Manage Opt, 13 (2017), 237-249. doi: 10.3934/jimo.2016014.

[14]

C. L. Hwang and A. S. M. Masud, Multiple Objective Decision Making: Methods and Applications, Springer, Berlin, 1979.

[15]

G. R. JahanshahlooF. Hosseinzadeh LotfiM. KhanmohammadiM. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights, Expert Syst Appl, 37 (2010), 7483-7488. doi: 10.1016/j.eswa.2010.04.011.

[16]

C. Kao and H. Hung, Data envelopment analysis with common weights: The comprise solution approach, J Oper Res Soc, 56 (2005), 1196-1203. doi: 10.1057/palgrave.jors.2601924.

[17]

M. N. Kritikos, A full ranking methodology in data envelopment analysis based on a set of dummy decision making units, Expert Systems with Applications: An International Journal, 77 (2017), 211-225. doi: 10.1016/j.eswa.2017.01.042.

[18]

F. LiJ. SongA. Dolgui and L. Liang, Using common weights and efficiency invariance principles for resource allocation and target setting, International J Prod Res, 55 (2017), 4982-4997. doi: 10.1080/00207543.2017.1287450.

[19]

R. LinZ. Chen and Z. Li, A new approach for allocating fixed costs among decision making units, J Ind Manag Optim, 12 (2016), 211-228. doi: 10.3934/jimo.2016.12.211.

[20]

F. H. F. Liu and H. H. Peng, Ranking of units on the DEA frontier with common weights, Comput Oper Res, 35 (2008), 1624-1637. doi: 10.1016/j.cor.2006.09.006.

[21]

S. MehrabianG. R. JahanshahlooM. R. Alirezaei and G. R. Amin, An assurance interval of the non-archimedean epsilon in DEA models, Eur J Oper Res, 48 (2000), 189-350. doi: 10.1287/opre.48.2.344.12381.

[22]

J. X. Nan and D. F. Li, Linear programming technique for solving interval-valued constraint matrix games, J Ind Manag Optim Optimization, 10 (2014), 1059-1070. doi: 10.3934/jimo.2014.10.1059.

[23]

J. Pourmahmoud and Z. Zeynali, A nonlinear model for common weights set identification in network Data Envelopment Analysis, Int J Ind Math, 38 (2016), 87-98.

[24]

A. RahmanS. Lee and T. C. Chung, Accurate multi-criteria decision making methodology for recommending machine learning algorithm, J Expert Syst Appl: An International Journal archive, 71 (2017), 257-278.

[25]

S. Ramazani-TarkhoraniM. KhodabakhshiS. Mehrabian and F. Nuri-Bahmani, Ranking decision-making units using common weights in DEA, Appl Math Model, 38 (2014), 3890-3896. doi: 10.1016/j.apm.2013.08.029.

[26]

Y. RollW. D. Cook and B. Golany, Controlling factor weighs in data envelopment analysis, IIE Trans, 23 (1991), 2-9.

[27]

S. SaatiA. Hatami-MarbiniP. J. Agrell and M. Tavana, A common set of weight approach using an ideal decision making unit in data envelopment analysis, Journal of Industrial and Management Optimization, 8 (2012), 623-637. doi: 10.3934/jimo.2012.8.623.

[28]

M. SalahiN. Torabi and A. Amiri, An optimistic robust optimization approach to common set of weights in DEA, Meas, 93 (2016), 67-73. doi: 10.1016/j.measurement.2016.06.049.

[29]

G. H. ShirdelS. Ramezani-Tarkhorani and Z. Jafari, tA Method for Evaluating the Performance of Decision Making Units with Imprecise Data Using Common Set of Weights, Int J Appl Comput Math, 3 (2017), 411-423. doi: 10.1007/s40819-016-0152-0.

[30]

J. SunJ. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights, Appl Math Model, 37 (2013), 6301-6310. doi: 10.1016/j.apm.2013.01.010.

[31]

K. Tone, On returns to scale under weight restrictions in data envelopment analysis, J Prod Anal, 16 (2001), 31-47.

[32]

Y. M. WangY. Luo and Y. X. Lan, Common weights for fully ranking decision making units by regression analysis, Expert Syst Appl, 38 (2011), 9122-9128. doi: 10.1016/j.eswa.2011.01.004.

show all references

References:
[1]

N. AdlerL. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context, Eur J Oper Res, 140 (2002), 249-265. doi: 10.1016/S0377-2217(02)00068-1.

[2]

N. AghayiM. Tavana and M. A. Raayatpanah, Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty, Eur J. Ind Eng, 10 (2016), 385-405. doi: 10.1504/EJIE.2016.076386.

[3]

A. Aldamak and S. Zolfaghari, Review of efficiency ranking methods in data envelopment analysis, Meas, 106 (2017), 161-172. doi: 10.1016/j.measurement.2017.04.028.

[4]

R. D. BankerA. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manage Sci, 30 (1984), 1031-1142. doi: 10.1287/mnsc.30.9.1078.

[5]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of DMUs, Eur J Oper Res, 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8.

[6]

C. I. ChiangM. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector, Math and Comput Model, 54 (2002), 2464-2470. doi: 10.1016/j.mcm.2011.06.002.

[7]

C. I. Chiang and G. H. Tzeng, A new efficiency measure for DEA: Efficiency achievement measure established on fuzzy multiple objectives programming, J Manage, 17 (2000), 369-388.

[8]

W. D. CookY. Roll and A. Kazakov, A DEA model for measuring the relative efficiency of highway maintenance patrols, Inform Syst Oper Res, 28 (1990), 113-124.

[9]

D. K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units, J Oper Res Soc, 53 (2002), 314-323. doi: 10.1057/palgrave.jors.2601253.

[10]

J. A. Ganley and S. A. Cubbin, Public Sector Efficiency Measurement: Applications of Data Envelopment Analysis, North-Holland, Amsterdam, 1992.

[11]

A. Hatami MarbiniM. TavanaP. J. AgrellF. Hosseinzadeh Lotfi and Z. Ghelej Beigi, A common-weights DEA model for centralized resource reduction and target setting, Comput Ind Eng, 79 (2015), 195-203.

[12]

F. Hosseinzadeh Lotfi, M. Rostamy-Malkhlifeh, G. R. Jahanshahloo, Z. Moghaddas, M. Khodabakhshi and M. Vaez-Ghasemi, A review of ranking models in data envelopment analysis, J Appl Math., 2013 (2013), Article ID: 492421, 20 pages.

[13]

C. K. HuF. B. Liu and C. F. Hu, Efficiency measures in fuzzy data envelopment analysis with common weights, J Ind Manage Opt, 13 (2017), 237-249. doi: 10.3934/jimo.2016014.

[14]

C. L. Hwang and A. S. M. Masud, Multiple Objective Decision Making: Methods and Applications, Springer, Berlin, 1979.

[15]

G. R. JahanshahlooF. Hosseinzadeh LotfiM. KhanmohammadiM. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights, Expert Syst Appl, 37 (2010), 7483-7488. doi: 10.1016/j.eswa.2010.04.011.

[16]

C. Kao and H. Hung, Data envelopment analysis with common weights: The comprise solution approach, J Oper Res Soc, 56 (2005), 1196-1203. doi: 10.1057/palgrave.jors.2601924.

[17]

M. N. Kritikos, A full ranking methodology in data envelopment analysis based on a set of dummy decision making units, Expert Systems with Applications: An International Journal, 77 (2017), 211-225. doi: 10.1016/j.eswa.2017.01.042.

[18]

F. LiJ. SongA. Dolgui and L. Liang, Using common weights and efficiency invariance principles for resource allocation and target setting, International J Prod Res, 55 (2017), 4982-4997. doi: 10.1080/00207543.2017.1287450.

[19]

R. LinZ. Chen and Z. Li, A new approach for allocating fixed costs among decision making units, J Ind Manag Optim, 12 (2016), 211-228. doi: 10.3934/jimo.2016.12.211.

[20]

F. H. F. Liu and H. H. Peng, Ranking of units on the DEA frontier with common weights, Comput Oper Res, 35 (2008), 1624-1637. doi: 10.1016/j.cor.2006.09.006.

[21]

S. MehrabianG. R. JahanshahlooM. R. Alirezaei and G. R. Amin, An assurance interval of the non-archimedean epsilon in DEA models, Eur J Oper Res, 48 (2000), 189-350. doi: 10.1287/opre.48.2.344.12381.

[22]

J. X. Nan and D. F. Li, Linear programming technique for solving interval-valued constraint matrix games, J Ind Manag Optim Optimization, 10 (2014), 1059-1070. doi: 10.3934/jimo.2014.10.1059.

[23]

J. Pourmahmoud and Z. Zeynali, A nonlinear model for common weights set identification in network Data Envelopment Analysis, Int J Ind Math, 38 (2016), 87-98.

[24]

A. RahmanS. Lee and T. C. Chung, Accurate multi-criteria decision making methodology for recommending machine learning algorithm, J Expert Syst Appl: An International Journal archive, 71 (2017), 257-278.

[25]

S. Ramazani-TarkhoraniM. KhodabakhshiS. Mehrabian and F. Nuri-Bahmani, Ranking decision-making units using common weights in DEA, Appl Math Model, 38 (2014), 3890-3896. doi: 10.1016/j.apm.2013.08.029.

[26]

Y. RollW. D. Cook and B. Golany, Controlling factor weighs in data envelopment analysis, IIE Trans, 23 (1991), 2-9.

[27]

S. SaatiA. Hatami-MarbiniP. J. Agrell and M. Tavana, A common set of weight approach using an ideal decision making unit in data envelopment analysis, Journal of Industrial and Management Optimization, 8 (2012), 623-637. doi: 10.3934/jimo.2012.8.623.

[28]

M. SalahiN. Torabi and A. Amiri, An optimistic robust optimization approach to common set of weights in DEA, Meas, 93 (2016), 67-73. doi: 10.1016/j.measurement.2016.06.049.

[29]

G. H. ShirdelS. Ramezani-Tarkhorani and Z. Jafari, tA Method for Evaluating the Performance of Decision Making Units with Imprecise Data Using Common Set of Weights, Int J Appl Comput Math, 3 (2017), 411-423. doi: 10.1007/s40819-016-0152-0.

[30]

J. SunJ. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights, Appl Math Model, 37 (2013), 6301-6310. doi: 10.1016/j.apm.2013.01.010.

[31]

K. Tone, On returns to scale under weight restrictions in data envelopment analysis, J Prod Anal, 16 (2001), 31-47.

[32]

Y. M. WangY. Luo and Y. X. Lan, Common weights for fully ranking decision making units by regression analysis, Expert Syst Appl, 38 (2011), 9122-9128. doi: 10.1016/j.eswa.2011.01.004.

Figure 1.  $0<y_P<x_P, \Delta_P = x_p-y_p ,m_p = {y_p \over x_p} , o<m_{p_1}<m_P<m_{p_2}$
Figure 2.  The interior points of the area $OQ_1P$, $R_1$, have less amount of $\Delta$ than $P$ while slopes of crossing lines from the origin and these points are less than $m_P$
Figure 3.  Slopes of crossing lines from the origin and the points located in the areas $R_1$ and $R_2$ are less than $m_P$
Figure 4.  Range of slopes of the lines crossing the origin and the points located in $R_3$ is the same as that for the the points located in the area enclosed by the segments $OP$, $OQ_6$ and $Q_6P$.
Figure 5.  Slope of the line crossing the origin and $P^{(U_1,V_1)}_o$ is maximum.
Figure 6.  Two pairs of DMUs with the same efficiency scores.
Table 1.  Input and Output data of DMUs
$DMU_j$ $x_{1j}$ $x_{2j}$ $x_{3j} $ $x_{4j}$ $y_{1j}$ $y_{2j} $
$DMU_1$99562051375262941271678
$DMU_2$91758981379204737211277
$DMU_3$3178100493615351127062051
$DMU_4$81358331124173021761538
$DMU_5$123686392486499052202042
$DMU_6 $114676101600358935171856
$DMU_7$70556001557362323522060
$DMU_8$2871115242880245217551664
$DMU_9$109889981730282344122334
$DMU_{10}$203293832421445453862080
$DMU_{11}$1414104682140364957352691
$DMU_{12}$1967112602759317860792804
$DMU_{13}$185198802335457058932495
$DMU_{14}$3100156495487294052483692
$DMU_{15}$5016180104008356778004852
$DMU_{16}$1924126822490297560403396
$DMU_j$ $x_{1j}$ $x_{2j}$ $x_{3j} $ $x_{4j}$ $y_{1j}$ $y_{2j} $
$DMU_1$99562051375262941271678
$DMU_2$91758981379204737211277
$DMU_3$3178100493615351127062051
$DMU_4$81358331124173021761538
$DMU_5$123686392486499052202042
$DMU_6 $114676101600358935171856
$DMU_7$70556001557362323522060
$DMU_8$2871115242880245217551664
$DMU_9$109889981730282344122334
$DMU_{10}$203293832421445453862080
$DMU_{11}$1414104682140364957352691
$DMU_{12}$1967112602759317860792804
$DMU_{13}$185198802335457058932495
$DMU_{14}$3100156495487294052483692
$DMU_{15}$5016180104008356778004852
$DMU_{16}$1924126822490297560403396
Table 2.  The generated common set of weights
$v^*_1$ $v^*_2$ $v^*_3 $ $v^*_4$ $u^*_1$ $u^*_2 $
Our method0.0000010.1810810.0000010.1243920.1164660.578059
Liu and Peng's method [20]0.0000010.0000010.0000017.50E-078.70E- 070.000004
$v^*_1$ $v^*_2$ $v^*_3 $ $v^*_4$ $u^*_1$ $u^*_2 $
Our method0.0000010.1810810.0000010.1243920.1164660.578059
Liu and Peng's method [20]0.0000010.0000010.0000017.50E-078.70E- 070.000004
Table 3.  The efficiencies
$DMU_j$ $E^*_j$CWA-EfficiencyCCR-Efficiency
$DMU_1$111
$DMU_2$0.8857610.8770071
$DMU_3$0.6651010.557160.690363
$DMU_4$0.898570.9114881
$DMU_5$0.8184360.8077231
$DMU_6$0.8125570.8239970.881091
$DMU_7$111
$DMU_8$0.487620.4404690.555791
$DMU_9$0.9406760.9689861
$DMU_{10}$0.8120470.7748540.863042
$DMU_{11}$0.946380.9632530.996068
$DMU_{12}$0.9566930.9205911
$DMU_{13}$0.902880.8842990.915511
$DMU_{14}$0.8580840.751161
$DMU_{15}$0.9600840.8674781
$DMU_{16}$111
$DMU_j$ $E^*_j$CWA-EfficiencyCCR-Efficiency
$DMU_1$111
$DMU_2$0.8857610.8770071
$DMU_3$0.6651010.557160.690363
$DMU_4$0.898570.9114881
$DMU_5$0.8184360.8077231
$DMU_6$0.8125570.8239970.881091
$DMU_7$111
$DMU_8$0.487620.4404690.555791
$DMU_9$0.9406760.9689861
$DMU_{10}$0.8120470.7748540.863042
$DMU_{11}$0.946380.9632530.996068
$DMU_{12}$0.9566930.9205911
$DMU_{13}$0.902880.8842990.915511
$DMU_{14}$0.8580840.751161
$DMU_{15}$0.9600840.8674781
$DMU_{16}$111
Table 4.  The average of the efficiencies in each method and their ratio
Our methodLiu and Peng's method [20]The ratio
0.8715560.8467791.02926
Our methodLiu and Peng's method [20]The ratio
0.8715560.8467791.02926
Table 5.  The ranking scores
$DMU_j$Our method: Input-oriented approachOur method: Output-oriented approachCWA-rankingCCR
$DMU_1$1321
$DMU_2$101091
$DMU_3$1515156
$DMU_4$9971
$DMU_5$1212121
$DMU_6$1313114
$DMU_7$2231
$DMU_8$1616167
$DMU_9$7741
$DMU_{10}$1414135
$DMU_{11}$6652
$DMU_{12}$5561
$DMU_{13}$8883
$DMU_{14}$1111141
$DMU_{15}$44101
$DMU_{16}$3111
$DMU_j$Our method: Input-oriented approachOur method: Output-oriented approachCWA-rankingCCR
$DMU_1$1321
$DMU_2$101091
$DMU_3$1515156
$DMU_4$9971
$DMU_5$1212121
$DMU_6$1313114
$DMU_7$2231
$DMU_8$1616167
$DMU_9$7741
$DMU_{10}$1414135
$DMU_{11}$6652
$DMU_{12}$5561
$DMU_{13}$8883
$DMU_{14}$1111141
$DMU_{15}$44101
$DMU_{16}$3111
Table 6.  The averages of the obtained efficiencies and their ratio in each case
Size of the sampleOur methodCWA-EfficienciesThe ratio
60.9161280.9069611.010107
120.5390860.5390821.000006
250.6899370.1481764.656189
500.5507240.5533200.995309
1000.6392430.4716781.355254
2000.5823100.5807111.002753
Size of the sampleOur methodCWA-EfficienciesThe ratio
60.9161280.9069611.010107
120.5390860.5390821.000006
250.6899370.1481764.656189
500.5507240.5533200.995309
1000.6392430.4716781.355254
2000.5823100.5807111.002753
[1]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial & Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

[2]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[3]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[4]

Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial & Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531

[5]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial & Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043

[6]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[7]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[8]

Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002

[9]

Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343

[10]

Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial & Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1

[11]

Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial & Management Optimization, 2008, 4 (3) : 611-616. doi: 10.3934/jimo.2008.4.611

[12]

Pablo Angulo-Ardoy. On the set of metrics without local limiting Carleman weights. Inverse Problems & Imaging, 2017, 11 (1) : 47-64. doi: 10.3934/ipi.2017003

[13]

Angela Cadena, Adriana Marcucci, Juan F. Pérez, Hernando Durán, Hernando Mutis, Camilo Taútiva, Fernando Palacios. Efficiency analysis in electricity transmission utilities. Journal of Industrial & Management Optimization, 2009, 5 (2) : 253-274. doi: 10.3934/jimo.2009.5.253

[14]

Wu Chanti, Qiu Youzhen. A nonlinear empirical analysis on influence factor of circulation efficiency. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 929-940. doi: 10.3934/dcdss.2019062

[15]

Behrouz Kheirfam. Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming. Journal of Industrial & Management Optimization, 2010, 6 (2) : 347-361. doi: 10.3934/jimo.2010.6.347

[16]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[17]

Deren Han, Xiaoming Yuan. Existence of anonymous link tolls for decentralizing an oligopolistic game and the efficiency analysis. Journal of Industrial & Management Optimization, 2011, 7 (2) : 347-364. doi: 10.3934/jimo.2011.7.347

[18]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[19]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[20]

Hong-Zhi Wei, Chun-Rong Chen. Three concepts of robust efficiency for uncertain multiobjective optimization problems via set order relations. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-17. doi: 10.3934/jimo.2018066

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (14)
  • HTML views (129)
  • Cited by (0)

[Back to Top]