• Previous Article
    A smoothing augmented Lagrangian method for nonconvex, nonsmooth constrained programs and its applications to bilevel problems
  • JIMO Home
  • This Issue
  • Next Article
    Optimal investment and consumption in the market with jump risk and capital gains tax
doi: 10.3934/jimo.2018165

Strong vector equilibrium problems with LSC approximate solution mappings

1. 

Thuongmai University, Hanoi, Vietnam

2. 

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10307 Hanoi, Vietnam

* Corresponding author: Pham Huu Sach

Received  December 2017 Revised  June 2018 Published  October 2018

Fund Project: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2016.11

This paper introduces two classes of parametric strong vector equilibrium problems whose approximate solution mappings are lower semicontinuous. In the first class, the objective set-valued maps satisfy some cone-convexity/cone-concavity assumptions, and in the second one, they satisfy some strongly proper cone-quasiconvexconcavity assumptions. All these mentioned concepts of generalized cone-convexity/cone-concavity/ strongly proper cone-quasiconvexconcavity are new and different from the traditional ones. Some upper semicontinuity/continuity results are also obtained. Applications to parametric weak u-set and l-set optimization problems and weak vector multivalued equilibrium problems are given.

Citation: Nguyen Ba Minh, Pham Huu Sach. Strong vector equilibrium problems with LSC approximate solution mappings. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018165
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008), 24-42. doi: 10.1080/01630560701873068.

[2]

Q.H. Ansari, E. Kobis and J.-C. Yao, Vector Variational Inequalities and Vector Optimization: Theory and Applications, Springer, Berlin, 2018. doi: 10.1007/978-3-319-63049-6.

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathem. Students., 63 (1994), 123-145.

[4]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56 (2013), 1515-1528. doi: 10.1007/s10898-012-9904-5.

[5]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009), 309-318. doi: 10.1007/s10898-008-9376-9.

[6]

F. Ferro, A minimax theorem for vector valued functions, part 2, J. Optim. Theory Appl., 68 (1991), 35-48. doi: 10.1007/BF00939934.

[7]

Chr. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320. doi: 10.1007/BF00940478.

[8]

X. H. Gong, Continuity of the solution set to parametric vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46. doi: 10.1007/s10957-008-9429-8.

[9]

E. Hernandez and L. Rodriguez-Marin, Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18. doi: 10.1016/j.jmaa.2006.01.033.

[10]

P. K. Khanh and L. M. Luu, Lower semicontinuity and upper semicontinuity of the solution sets and the approximate solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007), 329-339. doi: 10.1007/s10957-007-9190-4.

[11]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector-equilibrium problems, J. Glob. Optim., 41 (2008), 187-202. doi: 10.1007/s10898-007-9210-9.

[12]

D. Kuroiwa, On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400. doi: 10.1016/S0362-546X(01)00274-7.

[13]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515. doi: 10.1007/s10957-010-9736-8.

[14]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems, J. Glob. Optim., 51 (2011), 541-548. doi: 10.1007/s10898-010-9641-6.

[15]

S. J. LiH. M. Liu and C. L. Chen, Lower semicontinuity of parametric generalized weak vector equilibrium problems, Bull. Austral. Math. Soc., 81 (2010), 85-95. doi: 10.1017/S0004972709000628.

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.

[17]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264. doi: 10.1007/s10957-011-9883-6.

[18]

Z. Y. PengY. Zhao and X. Q. Yang, Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim., 36 (2015), 481-500. doi: 10.1080/01630563.2015.1013551.

[19]

P. H. Sach, Stability property in bifunction-set optimization, J. Optim. Theory Appl., 177 (2018), 376-398. doi: 10.1007/s10957-018-1280-y.

[20]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some non-weak vector Ky Fan inequalities, J. Glob. Optim., 57 (2013), 1401-1418. doi: 10.1007/s10898-012-0015-0.

[21]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364. doi: 10.1007/s10957-012-0105-7.

[22]

Y. D. Xu and S. J. Li, Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities, J. Ind. Manag. Optim., 13 (2017), 967-975. doi: 10.3934/jimo.2016056.

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008), 24-42. doi: 10.1080/01630560701873068.

[2]

Q.H. Ansari, E. Kobis and J.-C. Yao, Vector Variational Inequalities and Vector Optimization: Theory and Applications, Springer, Berlin, 2018. doi: 10.1007/978-3-319-63049-6.

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathem. Students., 63 (1994), 123-145.

[4]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56 (2013), 1515-1528. doi: 10.1007/s10898-012-9904-5.

[5]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009), 309-318. doi: 10.1007/s10898-008-9376-9.

[6]

F. Ferro, A minimax theorem for vector valued functions, part 2, J. Optim. Theory Appl., 68 (1991), 35-48. doi: 10.1007/BF00939934.

[7]

Chr. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320. doi: 10.1007/BF00940478.

[8]

X. H. Gong, Continuity of the solution set to parametric vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46. doi: 10.1007/s10957-008-9429-8.

[9]

E. Hernandez and L. Rodriguez-Marin, Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18. doi: 10.1016/j.jmaa.2006.01.033.

[10]

P. K. Khanh and L. M. Luu, Lower semicontinuity and upper semicontinuity of the solution sets and the approximate solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007), 329-339. doi: 10.1007/s10957-007-9190-4.

[11]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector-equilibrium problems, J. Glob. Optim., 41 (2008), 187-202. doi: 10.1007/s10898-007-9210-9.

[12]

D. Kuroiwa, On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400. doi: 10.1016/S0362-546X(01)00274-7.

[13]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515. doi: 10.1007/s10957-010-9736-8.

[14]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems, J. Glob. Optim., 51 (2011), 541-548. doi: 10.1007/s10898-010-9641-6.

[15]

S. J. LiH. M. Liu and C. L. Chen, Lower semicontinuity of parametric generalized weak vector equilibrium problems, Bull. Austral. Math. Soc., 81 (2010), 85-95. doi: 10.1017/S0004972709000628.

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.

[17]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264. doi: 10.1007/s10957-011-9883-6.

[18]

Z. Y. PengY. Zhao and X. Q. Yang, Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim., 36 (2015), 481-500. doi: 10.1080/01630563.2015.1013551.

[19]

P. H. Sach, Stability property in bifunction-set optimization, J. Optim. Theory Appl., 177 (2018), 376-398. doi: 10.1007/s10957-018-1280-y.

[20]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some non-weak vector Ky Fan inequalities, J. Glob. Optim., 57 (2013), 1401-1418. doi: 10.1007/s10898-012-0015-0.

[21]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364. doi: 10.1007/s10957-012-0105-7.

[22]

Y. D. Xu and S. J. Li, Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities, J. Ind. Manag. Optim., 13 (2017), 967-975. doi: 10.3934/jimo.2016056.

[1]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[2]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[3]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[4]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[5]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[6]

Qilin Wang, Shengji Li. Semicontinuity of approximate solution mappings to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1303-1309. doi: 10.3934/jimo.2016.12.1303

[7]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[8]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[9]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-16. doi: 10.3934/jimo.2018087

[10]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[11]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[12]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[13]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-16. doi: 10.3934/jimo.2018051

[14]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

[15]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[16]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[17]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[18]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[19]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[20]

Qiusheng Qiu, Xinmin Yang. Scalarization of approximate solution for vector equilibrium problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 143-151. doi: 10.3934/jimo.2013.9.143

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (12)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]