• Previous Article
    Exact and heuristic methods for personalized display advertising in virtual reality platforms
  • JIMO Home
  • This Issue
  • Next Article
    Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter
doi: 10.3934/jimo.2018153

On the M-eigenvalue estimation of fourth-order partially symmetric tensors

1. 

School of Mathematics and Information Science, Weifang University, Weifang Shandong, 261061, China

2. 

School of Management Science, Qufu Normal University, Rizhao Shandong, 276826, China

* Corresponding author: Haitao Che

Received  January 2018 Revised  May 2018 Published  September 2018

Fund Project: This project is supported by the Natural Science Foundation of China (11401438, 11671228, 11601261, 11571120), Shandong Provincial Natural Science Foundation (ZR2016AQ12), Project of Shandong Province Higher Educational Science and Technology Program(Grant No. J14LI52), and China Postdoctoral Science Foundation (Grant No. 2017M622163, 2018T110669)

In this article, the M-eigenvalue of fourth-order partially symmetric tensors is estimated by choosing different components of M-eigenvector. As an application, some upper bounds for the M-spectral radius of nonnegative fourth-order partially symmetric tensors are discussed, which are sharper than existing upper bounds. Finally, numerical examples are reported to verify the obtained results.

Citation: Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018153
References:
[1]

K. ChangK. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182. doi: 10.1016/j.laa.2013.02.013.

[2]

H. ChenZ. Huang and L. Qi, Copositivity detection of tensors: Theory and algorithm, J. Optimiz. Theory Appl., 174 (2017), 746-761. doi: 10.1007/s10957-017-1131-2.

[3]

H. Chen, Y. Chen, G. Li and L. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numer. Linear Algebra Appl., 25 (2018), e2125, 16pp. doi: 10.1002/nla.2125.

[4]

H. ChenZ. Huang and L. Qi, Copositive tensor detection and its applications in physics and hypergraphs, Comput. Optim. Appl., 69 (2018), 133-158. doi: 10.1007/s10589-017-9938-1.

[5]

H. Chen and Y. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China, 12 (2017), 1289-1302. doi: 10.1007/s11464-017-0645-0.

[6]

H. ChenL. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13 (2018), 255-276. doi: 10.1007/s11464-018-0681-4.

[7]

S. Chirit$\check{a}$A. Danescu and M. Ciarletta, On the srtong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1-27. doi: 10.1007/s10659-006-9096-7.

[8]

B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Cont. Dyn-B, 1 (2001), 257-263. doi: 10.3934/dcdsb.2001.1.257.

[9]

W. Ding, J. Liu, L. Qi and H. Yan, Elasticity M-tensors and the strong ellipticity condition, preprint, arXiv: 1705.09911.

[10]

D. HanH. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1-13. doi: 10.1007/s10659-009-9205-5.

[11]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114. doi: 10.1016/j.aml.2014.07.012.

[12]

Z. Huang and L. Qi, Positive definiteness of paired symmetric tensors and elasticity tensors, J. Comput. Appl. Math., 338 (2018), 22-43. doi: 10.1016/j.cam.2018.01.025.

[13]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361. doi: 10.1007/BF00126996.

[14]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Rational Mech. Anal., 63 (1977), 321-336. doi: 10.1007/BF00279991.

[15]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884. doi: 10.1137/S0895479801387413.

[16]

C. Padovani, Strong ellipticity of transversely isotropic elasticity tensors, Meccanica, 37 (2002), 515-525. doi: 10.1023/A:1020946506754.

[17]

L. QiH. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China, 4 (2009), 349-364. doi: 10.1007/s11464-009-0016-6.

[18]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[19]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595. doi: 10.1137/130909135.

[20]

J. R. Walton and J. P. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlin. Mech., 38 (2003), 441-455. doi: 10.1016/S0020-7462(01)00066-X.

[21]

Y. WangL. Caccetta and G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Linear Algebra and Appl., 22 (2015), 1059-1076. doi: 10.1002/nla.1996.

[22]

X. WangH. Chen and Y. Wang, Solution structures of tensor complementarity problem, Front. Math. China, 13 (2018), 935-945. doi: 10.1007/s11464-018-0675-2.

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601. doi: 10.1002/nla.633.

[24]

Y. WangK. Zhang and H. Sun, Criteria for strong H-tensors, Front. Mathe. China, 11 (2016), 577-592. doi: 10.1007/s11464-016-0525-z.

[25]

G. WangG. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Cont. Dyn-B, 22 (2017), 187-198. doi: 10.3934/dcdsb.2017009.

[26]

T. Zhang and G. Golub, Rank-1 approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550. doi: 10.1137/S0895479899352045.

[27]

K. Zhang and Y. Wang, An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math., 305 (2016), 1-10. doi: 10.1016/j.cam.2016.03.025.

[28]

G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra Appl., 25 (2018), e2134, 10pp. doi: 10.1002/nla.2134.

show all references

References:
[1]

K. ChangK. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182. doi: 10.1016/j.laa.2013.02.013.

[2]

H. ChenZ. Huang and L. Qi, Copositivity detection of tensors: Theory and algorithm, J. Optimiz. Theory Appl., 174 (2017), 746-761. doi: 10.1007/s10957-017-1131-2.

[3]

H. Chen, Y. Chen, G. Li and L. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numer. Linear Algebra Appl., 25 (2018), e2125, 16pp. doi: 10.1002/nla.2125.

[4]

H. ChenZ. Huang and L. Qi, Copositive tensor detection and its applications in physics and hypergraphs, Comput. Optim. Appl., 69 (2018), 133-158. doi: 10.1007/s10589-017-9938-1.

[5]

H. Chen and Y. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China, 12 (2017), 1289-1302. doi: 10.1007/s11464-017-0645-0.

[6]

H. ChenL. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13 (2018), 255-276. doi: 10.1007/s11464-018-0681-4.

[7]

S. Chirit$\check{a}$A. Danescu and M. Ciarletta, On the srtong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1-27. doi: 10.1007/s10659-006-9096-7.

[8]

B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Cont. Dyn-B, 1 (2001), 257-263. doi: 10.3934/dcdsb.2001.1.257.

[9]

W. Ding, J. Liu, L. Qi and H. Yan, Elasticity M-tensors and the strong ellipticity condition, preprint, arXiv: 1705.09911.

[10]

D. HanH. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1-13. doi: 10.1007/s10659-009-9205-5.

[11]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114. doi: 10.1016/j.aml.2014.07.012.

[12]

Z. Huang and L. Qi, Positive definiteness of paired symmetric tensors and elasticity tensors, J. Comput. Appl. Math., 338 (2018), 22-43. doi: 10.1016/j.cam.2018.01.025.

[13]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361. doi: 10.1007/BF00126996.

[14]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Rational Mech. Anal., 63 (1977), 321-336. doi: 10.1007/BF00279991.

[15]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884. doi: 10.1137/S0895479801387413.

[16]

C. Padovani, Strong ellipticity of transversely isotropic elasticity tensors, Meccanica, 37 (2002), 515-525. doi: 10.1023/A:1020946506754.

[17]

L. QiH. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China, 4 (2009), 349-364. doi: 10.1007/s11464-009-0016-6.

[18]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[19]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595. doi: 10.1137/130909135.

[20]

J. R. Walton and J. P. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlin. Mech., 38 (2003), 441-455. doi: 10.1016/S0020-7462(01)00066-X.

[21]

Y. WangL. Caccetta and G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Linear Algebra and Appl., 22 (2015), 1059-1076. doi: 10.1002/nla.1996.

[22]

X. WangH. Chen and Y. Wang, Solution structures of tensor complementarity problem, Front. Math. China, 13 (2018), 935-945. doi: 10.1007/s11464-018-0675-2.

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601. doi: 10.1002/nla.633.

[24]

Y. WangK. Zhang and H. Sun, Criteria for strong H-tensors, Front. Mathe. China, 11 (2016), 577-592. doi: 10.1007/s11464-016-0525-z.

[25]

G. WangG. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Cont. Dyn-B, 22 (2017), 187-198. doi: 10.3934/dcdsb.2017009.

[26]

T. Zhang and G. Golub, Rank-1 approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550. doi: 10.1137/S0895479899352045.

[27]

K. Zhang and Y. Wang, An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math., 305 (2016), 1-10. doi: 10.1016/j.cam.2016.03.025.

[28]

G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra Appl., 25 (2018), e2134, 10pp. doi: 10.1002/nla.2134.

Figure 1.  The comparisons of $ \Gamma(\mathcal{C})$, $ \mathcal{L}(\mathcal{C})$, $ \mathcal{M}(\mathcal{C})$ and $ \mathcal{N}(\mathcal{C})$
Figure 2.  The comparisons of $ \Gamma(\mathcal{C})$, $ \mathcal{L}(\mathcal{C})$ and $ \mathcal{M}(\mathcal{C})$
Figure 3.  The comparisons of $ \Gamma(\mathcal{C})$, $ \mathcal{L}(\mathcal{C})$ and $ \mathcal{M}(\mathcal{C})$
[1]

Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009

[2]

Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-15. doi: 10.3934/jimo.2018070

[3]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[4]

Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031

[5]

Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-10. doi: 10.3934/jimo.2018054

[6]

Haibin Chen, Liqun Qi. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1263-1274. doi: 10.3934/jimo.2015.11.1263

[7]

Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 583-599. doi: 10.3934/naco.2013.3.583

[8]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[9]

Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276

[10]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[11]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[12]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[13]

Zhongming Chen, Liqun Qi. Circulant tensors with applications to spectral hypergraph theory and stochastic process. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1227-1247. doi: 10.3934/jimo.2016.12.1227

[14]

Wenjuan Zhai, Bingzhen Chen. A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 71-84. doi: 10.3934/naco.2019006

[15]

Li Li, Xinzhen Zhang, Zheng-Hai Huang, Liqun Qi. Test of copositive tensors. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-11. doi: 10.3934/jimo.2018075

[16]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[17]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[18]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[19]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[20]

Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (16)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]