• Previous Article
    Optimal investment and consumption in the market with jump risk and capital gains tax
  • JIMO Home
  • This Issue
  • Next Article
    An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle
doi: 10.3934/jimo.2018152

Pricing and modularity decisions under competition

a. 

Department of Management Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China

b. 

Shanghai University of International Business and Economics, Gubei Road, 200336, Shanghai, China

c. 

Shanghai Wage Intelligent Technology Co., Ltd

d. 

College of Economics, Shenzhen University, Shenzhen, China

e. 

International Business School, Shaanxi Normal University, Xian, China

* Corresponding author: Hao Shao

Received  October 2017 Revised  May 2018 Published  September 2018

This paper considers price and modularity of competition between two firms with deterministic demand, in which demand is dependent on both the prices and the modularity levels determined by two firms. Bertrand competition and Stackelberg competition are formulated to derive the equilibrium solutions analytically. Because of the complexity, an intensive numerical study is conducted to investigate the impact of the sensitive parameters on equilibrium prices and modularity levels, as well as optimal profits of the two firms. An important and interesting finding is that optimal profits of the two firms under both types of competition are decreasing with the modularity cost when the price and modularity sensitivities are low, where both firms are worse-off due to decrease of the modularity levels; but they are increasing when the price and modularity sensitivities are high, where both firms are better-off at the expense of modular design. Our research reveals that Stackelberg game improves the modularity levels in most of the cases, though both firms perform better in Bertrand competition in these cases when jointly deciding the prices and modularity levels in the two firms.

Citation: Feng Tao, Hao Shao, KinKeung Lai. Pricing and modularity decisions under competition. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018152
References:
[1]

B. Agard and S. Bassetto, Modular design of product families for quality and cost, International Journal of Production Research, 51 (2013), 1648-1667. doi: 10.1080/00207543.2012.693963.

[2]

R. D. BankerI. Khosla and K. K. Sinha, Quality and competition, Management Science, 44 (1998), 1179-1192. doi: 10.1287/mnsc.44.9.1179.

[3]

L. M. BarbosaD. P. LacerdaF. A. S. Piran and A. Dresch, Exploratory analysis of the variables prevailing on the effects of product modularization on production volume and efficiency, International Journal of Production Economics, 193 (2017), 677-690. doi: 10.1016/j.ijpe.2017.08.028.

[4]

L. M. B. Cabral and M. Villas-Boas, Bertrand supertraps, Management Science, 51 (2005), 519-678. doi: 10.1287/mnsc.1040.0313.

[5]

S. Y. Chang and T. Y. Yeh, Optimal order quantity and product modularity for a two-echelon returnable supply chain, International Journal of Production Research, 51 (2013), 5210-5220. doi: 10.1080/00207543.2013.802051.

[6]

S. C. ChoiW. S. Desarbo and P. T. Harker, Product positioning under price competition, Management Science, 36 (1990), 123-246. doi: 10.1287/mnsc.36.2.175.

[7]

P. Danese and R. Filippini, Direct and mediated effects of product modularity on development time and product performance, 2010 IEEE International Conference on Management of Innovation & Technology, (2010). doi: 10.1109/ICMIT.2010.5492779.

[8]

A. Gamba and N. Fusari, Valuing modularity as a real option, Management Science, 55 (2009), 1877-1896. doi: 10.1287/mnsc.1090.1070.

[9]

J. Gualandris and M. Kalchschmidt, Product and process modularity: Improving flexibility and reducing supplier failure risk, International Journal of Production Research, 51 (2013), 5757-5770. doi: 10.1080/00207543.2013.793430.

[10]

M. E. Ketzenberg and R. A. Zuidwijk, Optimal pricing, ordering, and return policies for consumer goods, Production and Operations Management, 18 (2009), 344-360. doi: 10.1111/j.1937-5956.2009.01017.x.

[11]

A. Lamas and P. Chevalier, Joint dynamic pricing and lot-sizing under competition, European Journal of Operational Research, 266 (2018), 864-876. doi: 10.1016/j.ejor.2017.10.026.

[12]

J. F. LamponP. Cabanelas and J. Gonzalez-Benito, The impact of modular platforms on automobile manufacturing networks, Production Planning & Control, 28 (2017), 335-348. doi: 10.1080/09537287.2017.1287442.

[13]

W. Li and J. Chen, Pricing and quality competition in a brand-differentiated supply chain, International Journal of Production Economics, 202 (2018), 97-108. doi: 10.1016/j.ijpe.2018.04.026.

[14]

N. Matsubayashi and Y. Yamada, A note on price and quality competition between asymmetric firms, European Journal of Operational Research, 187 (2008), 571-581. doi: 10.1016/j.ejor.2007.03.021.

[15]

S. K. Mukhopadhyay and R. Setoputro, Optimal return policy and modular design for build-to-order products, Journal of Operations Management, 23 (2005), 496-506. doi: 10.1016/j.jom.2004.10.012.

[16]

S. K. Mukhopadhyay and R. Setaputra, Return policy in product reuse under uncertainty, International Journal of Production Research, 49 (2011), 5317-5332. doi: 10.1080/00207543.2010.523723.

[17]

M. PeroM. StöBlein and R. Cigolini, Linking product modularity to supply chain integration in the construction and shipbuilding industries, International Journal of Production Economics, 170 (2015), 602-615. doi: 10.1016/j.ijpe.2015.05.011.

[18]

C. Raduly-Baka and O. S. Nevalainen, The modular tool switching problem, European Journal of Operational Research, 242 (2015), 100-106. doi: 10.1016/j.ejor.2014.09.052.

[19]

J. S. Raju and A. Roy, Market information and firm performance, Management Science, 46 (2000), 1013-1169. doi: 10.1287/mnsc.46.8.1075.12024.

[20]

A. RoyD. M. Hanssens and J. S. Raju, Competitive pricing by a price leader, Management Science, 40 (1994), 809-945. doi: 10.1287/mnsc.40.7.809.

[21]

F. SalvadorC. Forza and M. Rungtusanatham, Modularity, product variety, production volume, and component sourcing: Theorizing beyond generic prescriptions, Journal of Operations Management, 20 (2002), 549-575. doi: 10.1016/S0272-6963(02)00027-X.

[22]

M. SeifbarghyK. Nouhi and A. Mahmoudi, Contract design in a supply chain considering price and quality dependent demand with customer segmentation, International Journal of Production Economics, 167 (2015), 108-118. doi: 10.1016/j.ijpe.2015.05.004.

[23]

J. D. Shulman and X. Geng, Add-on pricing by asymmetric firms, Management Science, 59 (2013), 899-917. doi: 10.1287/mnsc.1120.1603.

[24]

Q. TuM. A. Ragu-NathanT. S. Vonderembse and B. Ragu-Nathan, Measuring modularity-based manufacturing practices and their impact on mass customization capability: a customer-driven perspective, Decision Sciences, 35 (2004), 147-168. doi: 10.1111/j.00117315.2004.02663.x.

[25]

D. G. Tyndall, Welfare pricing and transport costs, Management Science, 5 (1959), 169-178. doi: 10.1287/mnsc.5.2.169.

[26]

S. K. VickeryS. D. BolumoleM. J. Castel and R. F. Calantone, The effects of product modularity on launch speed, European Journal of Operational Research, 53 (2015), 5369-5381. doi: 10.1080/00207543.2015.1047972.

[27]

S. WangQ. Hu and W. Liu, Price and quality-based competition and channel structure with consumer loyalty, European Journal of Operational Research, 262 (2017), 563-574. doi: 10.1016/j.ejor.2017.03.052.

[28]

S. X. XuQ. Lu and Z. Li, Optimal modular production strategies under market uncertainty: A real options perspective, International Journal of Production Economics, 139 (2012), 266-274. doi: 10.1016/j.ijpe.2012.05.009.

[29]

M. Zhang, H. Guo, B. Huo, X. Zhao and J. Huang, Linking supply chain quality integration with mass customization and product modularity, International Journal of Production Economics, 2017. doi: 10.1016/j.ijpe.2017.01.011.

[30]

Q. ZhangD. WuC. FuC. Baron and Z. Peng, A new method for measuring process flexibility of product design, International Transactions in Operational Research, 24 (2017), 821-838. doi: 10.1111/itor.12299.

show all references

References:
[1]

B. Agard and S. Bassetto, Modular design of product families for quality and cost, International Journal of Production Research, 51 (2013), 1648-1667. doi: 10.1080/00207543.2012.693963.

[2]

R. D. BankerI. Khosla and K. K. Sinha, Quality and competition, Management Science, 44 (1998), 1179-1192. doi: 10.1287/mnsc.44.9.1179.

[3]

L. M. BarbosaD. P. LacerdaF. A. S. Piran and A. Dresch, Exploratory analysis of the variables prevailing on the effects of product modularization on production volume and efficiency, International Journal of Production Economics, 193 (2017), 677-690. doi: 10.1016/j.ijpe.2017.08.028.

[4]

L. M. B. Cabral and M. Villas-Boas, Bertrand supertraps, Management Science, 51 (2005), 519-678. doi: 10.1287/mnsc.1040.0313.

[5]

S. Y. Chang and T. Y. Yeh, Optimal order quantity and product modularity for a two-echelon returnable supply chain, International Journal of Production Research, 51 (2013), 5210-5220. doi: 10.1080/00207543.2013.802051.

[6]

S. C. ChoiW. S. Desarbo and P. T. Harker, Product positioning under price competition, Management Science, 36 (1990), 123-246. doi: 10.1287/mnsc.36.2.175.

[7]

P. Danese and R. Filippini, Direct and mediated effects of product modularity on development time and product performance, 2010 IEEE International Conference on Management of Innovation & Technology, (2010). doi: 10.1109/ICMIT.2010.5492779.

[8]

A. Gamba and N. Fusari, Valuing modularity as a real option, Management Science, 55 (2009), 1877-1896. doi: 10.1287/mnsc.1090.1070.

[9]

J. Gualandris and M. Kalchschmidt, Product and process modularity: Improving flexibility and reducing supplier failure risk, International Journal of Production Research, 51 (2013), 5757-5770. doi: 10.1080/00207543.2013.793430.

[10]

M. E. Ketzenberg and R. A. Zuidwijk, Optimal pricing, ordering, and return policies for consumer goods, Production and Operations Management, 18 (2009), 344-360. doi: 10.1111/j.1937-5956.2009.01017.x.

[11]

A. Lamas and P. Chevalier, Joint dynamic pricing and lot-sizing under competition, European Journal of Operational Research, 266 (2018), 864-876. doi: 10.1016/j.ejor.2017.10.026.

[12]

J. F. LamponP. Cabanelas and J. Gonzalez-Benito, The impact of modular platforms on automobile manufacturing networks, Production Planning & Control, 28 (2017), 335-348. doi: 10.1080/09537287.2017.1287442.

[13]

W. Li and J. Chen, Pricing and quality competition in a brand-differentiated supply chain, International Journal of Production Economics, 202 (2018), 97-108. doi: 10.1016/j.ijpe.2018.04.026.

[14]

N. Matsubayashi and Y. Yamada, A note on price and quality competition between asymmetric firms, European Journal of Operational Research, 187 (2008), 571-581. doi: 10.1016/j.ejor.2007.03.021.

[15]

S. K. Mukhopadhyay and R. Setoputro, Optimal return policy and modular design for build-to-order products, Journal of Operations Management, 23 (2005), 496-506. doi: 10.1016/j.jom.2004.10.012.

[16]

S. K. Mukhopadhyay and R. Setaputra, Return policy in product reuse under uncertainty, International Journal of Production Research, 49 (2011), 5317-5332. doi: 10.1080/00207543.2010.523723.

[17]

M. PeroM. StöBlein and R. Cigolini, Linking product modularity to supply chain integration in the construction and shipbuilding industries, International Journal of Production Economics, 170 (2015), 602-615. doi: 10.1016/j.ijpe.2015.05.011.

[18]

C. Raduly-Baka and O. S. Nevalainen, The modular tool switching problem, European Journal of Operational Research, 242 (2015), 100-106. doi: 10.1016/j.ejor.2014.09.052.

[19]

J. S. Raju and A. Roy, Market information and firm performance, Management Science, 46 (2000), 1013-1169. doi: 10.1287/mnsc.46.8.1075.12024.

[20]

A. RoyD. M. Hanssens and J. S. Raju, Competitive pricing by a price leader, Management Science, 40 (1994), 809-945. doi: 10.1287/mnsc.40.7.809.

[21]

F. SalvadorC. Forza and M. Rungtusanatham, Modularity, product variety, production volume, and component sourcing: Theorizing beyond generic prescriptions, Journal of Operations Management, 20 (2002), 549-575. doi: 10.1016/S0272-6963(02)00027-X.

[22]

M. SeifbarghyK. Nouhi and A. Mahmoudi, Contract design in a supply chain considering price and quality dependent demand with customer segmentation, International Journal of Production Economics, 167 (2015), 108-118. doi: 10.1016/j.ijpe.2015.05.004.

[23]

J. D. Shulman and X. Geng, Add-on pricing by asymmetric firms, Management Science, 59 (2013), 899-917. doi: 10.1287/mnsc.1120.1603.

[24]

Q. TuM. A. Ragu-NathanT. S. Vonderembse and B. Ragu-Nathan, Measuring modularity-based manufacturing practices and their impact on mass customization capability: a customer-driven perspective, Decision Sciences, 35 (2004), 147-168. doi: 10.1111/j.00117315.2004.02663.x.

[25]

D. G. Tyndall, Welfare pricing and transport costs, Management Science, 5 (1959), 169-178. doi: 10.1287/mnsc.5.2.169.

[26]

S. K. VickeryS. D. BolumoleM. J. Castel and R. F. Calantone, The effects of product modularity on launch speed, European Journal of Operational Research, 53 (2015), 5369-5381. doi: 10.1080/00207543.2015.1047972.

[27]

S. WangQ. Hu and W. Liu, Price and quality-based competition and channel structure with consumer loyalty, European Journal of Operational Research, 262 (2017), 563-574. doi: 10.1016/j.ejor.2017.03.052.

[28]

S. X. XuQ. Lu and Z. Li, Optimal modular production strategies under market uncertainty: A real options perspective, International Journal of Production Economics, 139 (2012), 266-274. doi: 10.1016/j.ijpe.2012.05.009.

[29]

M. Zhang, H. Guo, B. Huo, X. Zhao and J. Huang, Linking supply chain quality integration with mass customization and product modularity, International Journal of Production Economics, 2017. doi: 10.1016/j.ijpe.2017.01.011.

[30]

Q. ZhangD. WuC. FuC. Baron and Z. Peng, A new method for measuring process flexibility of product design, International Transactions in Operational Research, 24 (2017), 821-838. doi: 10.1111/itor.12299.

Figure 1.  Effect of own price sensitivity
Figure 2.  Effect of competitor's price sensitivity
Figure 3.  Effect of own modularity sensitivity
Figure 4.  Effect of competitor's modularity sensitivity
Figure 5.  Effect of competitor's modularity sensitivity
Figure 6.  Effect of competitor's modularity sensitivity
Figure 7.  Effect of competitor's modularity sensitivity
Figure 8.  Effect of competitor's modularity sensitivity
[1]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[2]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[3]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[4]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[5]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[6]

Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 969-978. doi: 10.3934/dcdss.2019065

[7]

Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213

[8]

David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229

[9]

Eunha Shim, Beth Kochin, Alison Galvani. Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences & Engineering, 2009, 6 (4) : 839-854. doi: 10.3934/mbe.2009.6.839

[10]

Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200

[11]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

[12]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[13]

Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271

[14]

Qun Lin, Antoinette Tordesillas. Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions. Journal of Industrial & Management Optimization, 2014, 10 (1) : 337-362. doi: 10.3934/jimo.2014.10.337

[15]

Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen. Big data collection and analysis for manufacturing organisations. Big Data & Information Analytics, 2017, 2 (2) : 127-139. doi: 10.3934/bdia.2017002

[16]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[17]

Georgios Konstantinidis. A game theoretic analysis of the cops and robber game. Journal of Dynamics & Games, 2014, 1 (4) : 599-619. doi: 10.3934/jdg.2014.1.599

[18]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[19]

Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031

[20]

Ying Ji, Shaojian Qu, Fuxing Chen. Environmental game modeling with uncertainties. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 989-1003. doi: 10.3934/dcdss.2019067

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (9)
  • HTML views (119)
  • Cited by (0)

Other articles
by authors

[Back to Top]