doi: 10.3934/jimo.2018151

Mechanism design in a supply chain with ambiguity in private information

School of Business Administration, Hunan University, Changsha, 410082, China

* Corresponding author

Received  October 2017 Revised  May 2018 Published  September 2018

Fund Project: This work has been supported by the the National Social Science Foundation of China under Project No. 12CGL023. The authors are grateful to the anonymous referees for their constructive comments and suggestions

This paper considers a two-echelon supply chain with one supplier and one retailer. The retailer holds private information on the stochastic demand, and the supplier knows neither the market information nor its prior distribution. Two decision making criteria based on the generalized lexicographic preference are proposed to the supplier: the profit criterion and the regret criterion. Our analyses show that the profit criterion always coordinates the supply chain, while the regret criterion does not. If the market state is low, the profit criterion generates higher profit for the supplier than the regret criterion does, and vise versa. In both criteria, we show that the supplier's regret is bounded by both the range of the market state and the volatility of the demand. We further show that, the supplier should cooperate with the retailer with full demand information if the differences between market states are large enough, while selling the product by himself is better if the differences between market states are small enough.

Citation: Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018151
References:
[1]

V. BabichH. LiP. Ritchken and Y. Wang, The distribution-free newsboy problem: Extensions to the shortage penalty case, International Journal of Production Economics, 93 (2005), 465-477.

[2]

V. BabichH. LiP. Ritchken and Y. Wang, Contracting with asymmetric demand information in supply chains, European Journal of Operational Research, 217 (2012), 333-341. doi: 10.1016/j.ejor.2011.09.034.

[3]

F. A. Behringer, Lexicographic quasiconcave multiobjective programming, Mathematical Methods of Operations Research, 21 (1977), 103-116.

[4]

A. BurnetasS. M. Gilbert and C. E. Smith, Quantity discounts in single-period supply contracts with asymmetric demand information, IIE Transactions, 39 (2007), 465-479.

[5]

G. P. Cachon, Supply chain coordination with contracts, in Handbooks in Operations Research and Management Science (eds. A. G. De Kok and S. C. Graves), Elsevier, 2003, 227-339.

[6]

W. Chu, Demand signalling and screening in channels of distribution, Marketing Science, 11 (1992), 327-347. doi: 10.1287/mksc.11.4.327.

[7]

J. Cole, Boeing, pushing for record production, finds parts shortages, delivery delays, Wall Street Journal, 1997.

[8]

P. Engardio, Why the supply chain broke down, Business Week, 2001.

[9]

X. Fang and Y. Wang, Contract efficiency: Demand uncertainty, price sensitivity and information asymmetry, International Journal of Operational Research, 15 (2012), 235-259. doi: 10.1504/IJOR.2012.049481.

[10]

G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions, Journal of the Operational Research Society, 44 (1993), 825-834.

[11]

X. GanS. P. Sethi and J. Zhou, Commitment-penalty contracts in drop-shipping supply chains with asymmetric demand information, European Journal of Operational Research, 204 (2010), 449-462. doi: 10.1016/j.ejor.2009.11.008.

[12]

Q. Geng and M. C. Minutolo, Failure fee under stochastic demand and information asymmetry, International Journal of Production Economics, 128 (2010), 269-279. doi: 10.1016/j.ijpe.2010.07.025.

[13]

J. Kamburowski, The distribution-free newsboy problem under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112. doi: 10.1016/j.ejor.2014.01.066.

[14]

J. Kamburowski, On the distribution-free newsboy problem with some non-skewed demands, Operations Research Letters, 43 (2015), 165-171. doi: 10.1016/j.orl.2015.01.005.

[15]

C. M. Lee and S. L. Hsu, The effect of advertising on the distribution-free newsboy problem, International Journal of Production Economics, 129 (2011), 217-224. doi: 10.1016/j.ijpe.2010.10.009.

[16]

H. L. LeeV. Padmanabhan and S. Whang, Information distortion in a supply chain: The bullwhip effect, Management science, 43 (1997), 546-558.

[17]

D. LeiJ. Li and Z. Liu, Supply chain contracts under demand and cost disruptions with asymmetric information, International Journal of Production Economics, 139 (2012), 116-126. doi: 10.1016/j.ijpe.2011.11.031.

[18]

H. LiP. Ritchken and Y. Wang, Option and forward contracting with asymmetric information: Valuation issues in supply chains, European Journal of Operational Research, 197 (2009), 134-148. doi: 10.1016/j.ejor.2008.06.021.

[19]

Z. LiuR. ZhaoX. Liu and L. Chen, Contract designing for a supply chain with uncertain information based on confidence level, Applied Soft Computing, 56 (2017), 617-631.

[20]

Z. LiJ. K. RyanL. Shao and D. Sun, Supply contract design for competing heterogeneous suppliers under asymmetric information, Production and Operations Managements, 24 (2015), 791-807. doi: 10.1111/poms.12294.

[21]

F. LvS. Ma and X. Guan, The implication of capacity reservation contracts in assembly system with asymmetric demand information, International Journal of Production Research, 53 (2015), 5564-5591. doi: 10.1080/00207543.2015.1036150.

[22]

I. Moon and S. Choi, The distribution free newsboy problem with balking, Journal of the Operational Research Society, 6 (2016), 537-542.

[23]

I. Moon, D. K. Yoo and S. Saha, The distribution-free newsboy problem with multiple discounts and upgrades, Mathematical Problems in Engineering, 2016 (2016), Article ID 2017253, 11 pages. doi: 10.1155/2016/2017253.

[24]

J. MostardR. De Koster and R. Teunter, The distribution-free newsboy problem with resalable returns, International Journal of Production Economics, 97 (2005), 329-342.

[25]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica, 47 (1979), 61-73. doi: 10.2307/1912346.

[26]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.

[27]

G. Perakis and G. Roels, Regret in the newsvendor model with partial information, Operations Research, 56 (2008), 188-203. doi: 10.1287/opre.1070.0486.

[28]

S. Saghafian and B. Tomlin, The newsvendor under demand ambiguity: Combining data with moment and tail information, Operations Research, 64 (2016), 167-185. doi: 10.1287/opre.2015.1454.

[29]

H. ScarfK. J. Arrow and S. Karlin, A min-max solution of an inventory problem, Studies in the mathematical theory of inventory and production, 10 (1958), 201-209.

[30]

B. Shen, T. M. Choi and S. Minner, A review on supply chain contracting with information considerations: information updating and information asymmetry, International Journal of Production Research, (2018). doi: 10.1080/00207543.2018.1467062.

[31]

T. A. Taylor and W. Xiao, Incentives for retailer forecasting: Rebates vs. returns, Management Science, 55 (2009), 1654-1669. doi: 10.1287/mnsc.1090.1045.

[32]

J. Wang, R. Zhao and Y. Lan, Incentives for a retailer with two-dimensional asymmetric information, Working paper, Available at SSRN 2443649.

[33]

T. Xiao and J. Shi, Consumer returns reduction and information revelation mechanism for a supply chain, Annals of Operations Research, 240 (2016), 661-681. doi: 10.1007/s10479-014-1592-8.

[34]

J. YueB. Chen and M. C. Wang, Expected value of distribution information for the newsvendor problem, Operations research, 54 (2006), 1128-1136. doi: 10.1287/opre.1060.0318.

show all references

References:
[1]

V. BabichH. LiP. Ritchken and Y. Wang, The distribution-free newsboy problem: Extensions to the shortage penalty case, International Journal of Production Economics, 93 (2005), 465-477.

[2]

V. BabichH. LiP. Ritchken and Y. Wang, Contracting with asymmetric demand information in supply chains, European Journal of Operational Research, 217 (2012), 333-341. doi: 10.1016/j.ejor.2011.09.034.

[3]

F. A. Behringer, Lexicographic quasiconcave multiobjective programming, Mathematical Methods of Operations Research, 21 (1977), 103-116.

[4]

A. BurnetasS. M. Gilbert and C. E. Smith, Quantity discounts in single-period supply contracts with asymmetric demand information, IIE Transactions, 39 (2007), 465-479.

[5]

G. P. Cachon, Supply chain coordination with contracts, in Handbooks in Operations Research and Management Science (eds. A. G. De Kok and S. C. Graves), Elsevier, 2003, 227-339.

[6]

W. Chu, Demand signalling and screening in channels of distribution, Marketing Science, 11 (1992), 327-347. doi: 10.1287/mksc.11.4.327.

[7]

J. Cole, Boeing, pushing for record production, finds parts shortages, delivery delays, Wall Street Journal, 1997.

[8]

P. Engardio, Why the supply chain broke down, Business Week, 2001.

[9]

X. Fang and Y. Wang, Contract efficiency: Demand uncertainty, price sensitivity and information asymmetry, International Journal of Operational Research, 15 (2012), 235-259. doi: 10.1504/IJOR.2012.049481.

[10]

G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions, Journal of the Operational Research Society, 44 (1993), 825-834.

[11]

X. GanS. P. Sethi and J. Zhou, Commitment-penalty contracts in drop-shipping supply chains with asymmetric demand information, European Journal of Operational Research, 204 (2010), 449-462. doi: 10.1016/j.ejor.2009.11.008.

[12]

Q. Geng and M. C. Minutolo, Failure fee under stochastic demand and information asymmetry, International Journal of Production Economics, 128 (2010), 269-279. doi: 10.1016/j.ijpe.2010.07.025.

[13]

J. Kamburowski, The distribution-free newsboy problem under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112. doi: 10.1016/j.ejor.2014.01.066.

[14]

J. Kamburowski, On the distribution-free newsboy problem with some non-skewed demands, Operations Research Letters, 43 (2015), 165-171. doi: 10.1016/j.orl.2015.01.005.

[15]

C. M. Lee and S. L. Hsu, The effect of advertising on the distribution-free newsboy problem, International Journal of Production Economics, 129 (2011), 217-224. doi: 10.1016/j.ijpe.2010.10.009.

[16]

H. L. LeeV. Padmanabhan and S. Whang, Information distortion in a supply chain: The bullwhip effect, Management science, 43 (1997), 546-558.

[17]

D. LeiJ. Li and Z. Liu, Supply chain contracts under demand and cost disruptions with asymmetric information, International Journal of Production Economics, 139 (2012), 116-126. doi: 10.1016/j.ijpe.2011.11.031.

[18]

H. LiP. Ritchken and Y. Wang, Option and forward contracting with asymmetric information: Valuation issues in supply chains, European Journal of Operational Research, 197 (2009), 134-148. doi: 10.1016/j.ejor.2008.06.021.

[19]

Z. LiuR. ZhaoX. Liu and L. Chen, Contract designing for a supply chain with uncertain information based on confidence level, Applied Soft Computing, 56 (2017), 617-631.

[20]

Z. LiJ. K. RyanL. Shao and D. Sun, Supply contract design for competing heterogeneous suppliers under asymmetric information, Production and Operations Managements, 24 (2015), 791-807. doi: 10.1111/poms.12294.

[21]

F. LvS. Ma and X. Guan, The implication of capacity reservation contracts in assembly system with asymmetric demand information, International Journal of Production Research, 53 (2015), 5564-5591. doi: 10.1080/00207543.2015.1036150.

[22]

I. Moon and S. Choi, The distribution free newsboy problem with balking, Journal of the Operational Research Society, 6 (2016), 537-542.

[23]

I. Moon, D. K. Yoo and S. Saha, The distribution-free newsboy problem with multiple discounts and upgrades, Mathematical Problems in Engineering, 2016 (2016), Article ID 2017253, 11 pages. doi: 10.1155/2016/2017253.

[24]

J. MostardR. De Koster and R. Teunter, The distribution-free newsboy problem with resalable returns, International Journal of Production Economics, 97 (2005), 329-342.

[25]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica, 47 (1979), 61-73. doi: 10.2307/1912346.

[26]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.

[27]

G. Perakis and G. Roels, Regret in the newsvendor model with partial information, Operations Research, 56 (2008), 188-203. doi: 10.1287/opre.1070.0486.

[28]

S. Saghafian and B. Tomlin, The newsvendor under demand ambiguity: Combining data with moment and tail information, Operations Research, 64 (2016), 167-185. doi: 10.1287/opre.2015.1454.

[29]

H. ScarfK. J. Arrow and S. Karlin, A min-max solution of an inventory problem, Studies in the mathematical theory of inventory and production, 10 (1958), 201-209.

[30]

B. Shen, T. M. Choi and S. Minner, A review on supply chain contracting with information considerations: information updating and information asymmetry, International Journal of Production Research, (2018). doi: 10.1080/00207543.2018.1467062.

[31]

T. A. Taylor and W. Xiao, Incentives for retailer forecasting: Rebates vs. returns, Management Science, 55 (2009), 1654-1669. doi: 10.1287/mnsc.1090.1045.

[32]

J. Wang, R. Zhao and Y. Lan, Incentives for a retailer with two-dimensional asymmetric information, Working paper, Available at SSRN 2443649.

[33]

T. Xiao and J. Shi, Consumer returns reduction and information revelation mechanism for a supply chain, Annals of Operations Research, 240 (2016), 661-681. doi: 10.1007/s10479-014-1592-8.

[34]

J. YueB. Chen and M. C. Wang, Expected value of distribution information for the newsvendor problem, Operations research, 54 (2006), 1128-1136. doi: 10.1287/opre.1060.0318.

[1]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[2]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[3]

Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial & Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513

[4]

Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301

[5]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[6]

Tsan-Ming Choi. Quick response in fashion supply chains with dual information updating. Journal of Industrial & Management Optimization, 2006, 2 (3) : 255-268. doi: 10.3934/jimo.2006.2.255

[7]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial & Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[8]

Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial & Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263

[9]

Rui Wang, Denghua Zhong, Yuankun Zhang, Jia Yu, Mingchao Li. A multidimensional information model for managing construction information. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1285-1300. doi: 10.3934/jimo.2015.11.1285

[10]

Vikram Krishnamurthy, William Hoiles. Information diffusion in social sensing. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 365-411. doi: 10.3934/naco.2016017

[11]

Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016

[12]

Apostolis Pavlou. Asymmetric information in a bilateral monopoly. Journal of Dynamics & Games, 2016, 3 (2) : 169-189. doi: 10.3934/jdg.2016009

[13]

Ioannis D. Baltas, Athanasios N. Yannacopoulos. Uncertainty and inside information. Journal of Dynamics & Games, 2016, 3 (1) : 1-24. doi: 10.3934/jdg.2016001

[14]

Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935

[15]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[16]

Lubomir Kostal, Shigeru Shinomoto. Efficient information transfer by Poisson neurons. Mathematical Biosciences & Engineering, 2016, 13 (3) : 509-520. doi: 10.3934/mbe.2016004

[17]

Jian Yang, Youhua (Frank) Chen. On information quality ranking and its managerial implications. Journal of Industrial & Management Optimization, 2010, 6 (4) : 729-750. doi: 10.3934/jimo.2010.6.729

[18]

Tero Laihonen. Information retrieval and the average number of input clues. Advances in Mathematics of Communications, 2017, 11 (1) : 203-223. doi: 10.3934/amc.2017013

[19]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[20]

François Monard, Guillaume Bal. Inverse diffusion problems with redundant internal information. Inverse Problems & Imaging, 2012, 6 (2) : 289-313. doi: 10.3934/ipi.2012.6.289

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (14)
  • HTML views (128)
  • Cited by (0)

Other articles
by authors

[Back to Top]