doi: 10.3934/jimo.2018146

Application of the preventive maintenance scheduling to increase the equipment reliability: Case study- bag filters in cement factory

Department of Industrial Engineering, Amirkabir University of Technology, 424 Hafez Avenue, 15916-34311, Tehran, Iran

* S. M. T. Fatemi Ghomi: Fatemi@aut.ac.ir

Received  June 2017 Revised  May 2018 Published  September 2018

This paper solves a new model of preventive maintenance scheduling with novel methodology. The aim of solving this problem is to determine the period for which bag filter should be taken off line for planned preventive maintenance over a specific time horizon and maintain a certain level of reliability with minimal maintenance cost. A mathematical programming method (Benders' decomposition) and a metaheuristic algorithm are presented to provide solutions. The obtained objective value from Benders' decomposition method is considered as the stopping criterion in the metaheuristic algorithm. To demonstrate the significance and originality of the proposed model and the efficiency of the algorithms, computational analysis is provided to realistic bag filters system in the cement factory. The obtained result is a schedule that allows the cement factory to consider the preventive maintenance for bag filters over the time horizon.

Citation: Masoud Ebrahimi, Seyyed Mohammad Taghi Fatemi Ghomi, Behrooz Karimi. Application of the preventive maintenance scheduling to increase the equipment reliability: Case study- bag filters in cement factory. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018146
References:
[1]

H. Allaoui, Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan, International Journal of Production Economics, 112 (2008), 161-167. doi: 10.1016/j.ijpe.2006.08.017.

[2]

J. F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik, 4 (1962), 238-252. doi: 10.1007/BF01386316.

[3]

S. P. Canto, Application of Benders' decomposition to power plant preventive maintenance scheduling, European Journal of Operational Research, 184 (2008), 759-777. doi: 10.1016/j.ejor.2006.11.018.

[4]

J. X. Cao, The integrated yard truck and yard crane scheduling problem: Benders' decomposition-based methods, Transportation Research Part E: Logistics and Transportation Review, 46 (2010), 344-353.

[5]

T. Chen, Reusable rocket engine preventive maintenance scheduling using genetic algorithm, Reliability Engineering and System Safety, 114 (2013), 52-60.

[6]

M. DoostparastF. Kolahan and M. Doostparast, A reliability-based approach to optimize preventive maintenance scheduling for coherent systems, Reliability Engineering and System Safety, 126 (2014), 98-106.

[7]

M. EbrahimiS. M. T. Fatemi Ghomi and B. Karimi, Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates, Applied Mathematical Modelling, 38 (2014), 2490-2504. doi: 10.1016/j.apm.2013.10.061.

[8]

M.-C. Fitouhi and M. Nourelfath, Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems, Reliability Engineering and System Safety, 121 (2014), 175-186.

[9]

H. GoJ.-S. Kim and D.-H. Lee, Operation and preventive maintenance scheduling for containerships: Mathematical model and solution algorithm, European Journal of Operational Research, 229 (2013), 626-636. doi: 10.1016/j.ejor.2013.04.005.

[10]

M. Graisa and A. Al-Habaibeh, An investigation into current production challenges facing the Libyan cement industry and the need for innovative total productive maintenance (TPM) strategy, Journal of Manufacturing Technology Management, 22 (2011), 541-558. doi: 10.1108/17410381111126445.

[11]

E. GustavssonM. PatrikssonA. B. StrömbergA. Wojciechowski and M. Önnheim, Preventive maintenance scheduling of multi-component systems with interval costs, Computers and Industrial Engineering, 76 (2014), 390-400.

[12]

M. KhatamiM. Mahootchi and R. Z. Farahani, Benders' decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties, Transportation Research Part E: Logistics and Transportation Review, 79 (2015), 1-21.

[13]

Z. LuW. Cui and X. Han, Integrated production and preventive maintenance scheduling for a single machine with failure uncertainty, Computers and Industrial Engineering, 80 (2015), 236-244.

[14]

E. A. M. Miema and A. M. Mweta, An analysis of economics of investing in IT in the maintenance department: An empirical study in a cement factory in Tanzania, Journal of Quality in Maintenance Engineering, 9 (2003), 411-435.

[15]

Moghaddam and S. Kamran, Multi-objective preventive maintenance and replacement scheduling in a manufacturing system using goal programming, International Journal of Production Economics, 146 (2013), 704-716.

[16]

M. Mollahassani-PourA. Abdollahi and M. Rashidinejad, Application of a novel cost reduction index to preventive maintenance scheduling, International Journal of Electrical Power and Energy Systems, 56 (2014), 235-240.

[17]

B. NaderiM. Zandieh and M. Aminnayeri, Incorporating periodic preventive maintenance into flexible flowshop scheduling problems, Applied Soft Computing, 11 (2011), 2094-2101. doi: 10.1016/j.asoc.2010.07.008.

[18]

M. PandeyM. J. Zuo and R. Moghaddass, Selective maintenance scheduling over a finite planning horizon, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 230 (2016), 162-177.

[19]

M. Parastegari, AC constrained hydro-thermal generation scheduling problem: Application of Benders decomposition method improved by BFPSO, International Journal of Electrical Power and Energy Systems, 49 (2013), 199-212.

[20]

Pereira and C. MNA, A particle swarm optimization (PSO) approach for non-periodic preventive maintenance scheduling programming, Progress in Nuclear Energy, 52 (2010), 710-714.

[21]

S. Perez-Canto and J. C. Rubio-Romero, A model for the preventive maintenance scheduling of power plants including wind farms, Reliability Engineering and System Safety, 119 (2013), 67-75.

[22]

H. Shafeek, Continuous improvement of maintenance process for the cement industry — a case study, Journal of Quality in Maintenance Engineering, 20 (2014), 333-376. doi: 10.1108/JQME-07-2013-0047.

[23]

W. ZhuM. Fouladirad and C. Berenguer, Bi-criteria maintenance policies for a system subject to competing wear and shock failures, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229 (2015), 485-500.

show all references

References:
[1]

H. Allaoui, Simultaneously scheduling n jobs and the preventive maintenance on the two-machine flow shop to minimize the makespan, International Journal of Production Economics, 112 (2008), 161-167. doi: 10.1016/j.ijpe.2006.08.017.

[2]

J. F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik, 4 (1962), 238-252. doi: 10.1007/BF01386316.

[3]

S. P. Canto, Application of Benders' decomposition to power plant preventive maintenance scheduling, European Journal of Operational Research, 184 (2008), 759-777. doi: 10.1016/j.ejor.2006.11.018.

[4]

J. X. Cao, The integrated yard truck and yard crane scheduling problem: Benders' decomposition-based methods, Transportation Research Part E: Logistics and Transportation Review, 46 (2010), 344-353.

[5]

T. Chen, Reusable rocket engine preventive maintenance scheduling using genetic algorithm, Reliability Engineering and System Safety, 114 (2013), 52-60.

[6]

M. DoostparastF. Kolahan and M. Doostparast, A reliability-based approach to optimize preventive maintenance scheduling for coherent systems, Reliability Engineering and System Safety, 126 (2014), 98-106.

[7]

M. EbrahimiS. M. T. Fatemi Ghomi and B. Karimi, Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates, Applied Mathematical Modelling, 38 (2014), 2490-2504. doi: 10.1016/j.apm.2013.10.061.

[8]

M.-C. Fitouhi and M. Nourelfath, Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems, Reliability Engineering and System Safety, 121 (2014), 175-186.

[9]

H. GoJ.-S. Kim and D.-H. Lee, Operation and preventive maintenance scheduling for containerships: Mathematical model and solution algorithm, European Journal of Operational Research, 229 (2013), 626-636. doi: 10.1016/j.ejor.2013.04.005.

[10]

M. Graisa and A. Al-Habaibeh, An investigation into current production challenges facing the Libyan cement industry and the need for innovative total productive maintenance (TPM) strategy, Journal of Manufacturing Technology Management, 22 (2011), 541-558. doi: 10.1108/17410381111126445.

[11]

E. GustavssonM. PatrikssonA. B. StrömbergA. Wojciechowski and M. Önnheim, Preventive maintenance scheduling of multi-component systems with interval costs, Computers and Industrial Engineering, 76 (2014), 390-400.

[12]

M. KhatamiM. Mahootchi and R. Z. Farahani, Benders' decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties, Transportation Research Part E: Logistics and Transportation Review, 79 (2015), 1-21.

[13]

Z. LuW. Cui and X. Han, Integrated production and preventive maintenance scheduling for a single machine with failure uncertainty, Computers and Industrial Engineering, 80 (2015), 236-244.

[14]

E. A. M. Miema and A. M. Mweta, An analysis of economics of investing in IT in the maintenance department: An empirical study in a cement factory in Tanzania, Journal of Quality in Maintenance Engineering, 9 (2003), 411-435.

[15]

Moghaddam and S. Kamran, Multi-objective preventive maintenance and replacement scheduling in a manufacturing system using goal programming, International Journal of Production Economics, 146 (2013), 704-716.

[16]

M. Mollahassani-PourA. Abdollahi and M. Rashidinejad, Application of a novel cost reduction index to preventive maintenance scheduling, International Journal of Electrical Power and Energy Systems, 56 (2014), 235-240.

[17]

B. NaderiM. Zandieh and M. Aminnayeri, Incorporating periodic preventive maintenance into flexible flowshop scheduling problems, Applied Soft Computing, 11 (2011), 2094-2101. doi: 10.1016/j.asoc.2010.07.008.

[18]

M. PandeyM. J. Zuo and R. Moghaddass, Selective maintenance scheduling over a finite planning horizon, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 230 (2016), 162-177.

[19]

M. Parastegari, AC constrained hydro-thermal generation scheduling problem: Application of Benders decomposition method improved by BFPSO, International Journal of Electrical Power and Energy Systems, 49 (2013), 199-212.

[20]

Pereira and C. MNA, A particle swarm optimization (PSO) approach for non-periodic preventive maintenance scheduling programming, Progress in Nuclear Energy, 52 (2010), 710-714.

[21]

S. Perez-Canto and J. C. Rubio-Romero, A model for the preventive maintenance scheduling of power plants including wind farms, Reliability Engineering and System Safety, 119 (2013), 67-75.

[22]

H. Shafeek, Continuous improvement of maintenance process for the cement industry — a case study, Journal of Quality in Maintenance Engineering, 20 (2014), 333-376. doi: 10.1108/JQME-07-2013-0047.

[23]

W. ZhuM. Fouladirad and C. Berenguer, Bi-criteria maintenance policies for a system subject to competing wear and shock failures, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229 (2015), 485-500.

Figure 1.  Benders decomposition flow chart
Figure 2.  Solution representation
Figure 3.  A crossover example
Figure 4.  Solution procedures of NSGAII algorithm
Figure 5.  Converges of the lower and upper bounds versus iterations
Figure 6.  Trade offs between two objectives
Figure 7.  The progress of NSGAII for obtaining the optimal solution
Table 1.  The input parameters for model
Bag filter.NoBag filter sizeScale parameterShape parameterRepair time (hr)Replacement time (hr)Repair cost ($) Replacement cost($)
1 Small 2500 2.5 50 120 20 40
2 Small 2500 2.5 50 120 20 40
3 Small 2500 2.5 50 120 20 40
4 Small 2500 2.5 50 120 20 40
5 Small 2500 2.5 50 120 20 40
6 Small 2500 2.5 50 120 20 40
7 Small 2500 2.5 50 120 20 40
8 Small 2500 2.5 50 120 20 40
9 Small 2500 2.5 50 120 20 40
10 Small 2500 2.5 50 120 20 40
11 Small 2500 2.5 50 120 20 40
12 Medium 2400 2.6 50 120 50 100
13 Medium 2400 2.6 50 120 50 100
14 Medium 2400 2.6 50 120 50 100
15 Small 2500 2.5 50 120 20 40
16 Small 2500 2.5 50 120 20 40
17 Small 2500 2.5 50 120 20 40
18 Large 2400 2.4 50 120 120 240
19 Small 2500 2.5 50 120 20 40
20 Small 2500 2.5 50 120 20 40
21 Small 2500 2.5 50 120 20 40
22 Small 2500 2.5 50 120 20 40
23 Large 2400 2.4 50 120 120 240
24 Small 2500 2.5 50 120 20 40
25 Small 2500 2.5 50 120 20 40
26 Small 2500 2.5 50 120 20 40
27 Small 2500 2.5 50 120 20 40
28 Small 2500 2.5 50 120 20 40
29 Small 2500 2.5 50 120 20 40
30 Large 2400 2.4 50 120 120 240
31 Small 2500 2.5 50 120 20 40
32 Small 2500 2.5 50 120 20 40
33 Large 2400 2.4 50 120 120 240
34 Small 2500 2.5 50 120 20 40
35 Small 2500 2.5 50 120 20 40
Bag filter.NoBag filter sizeScale parameterShape parameterRepair time (hr)Replacement time (hr)Repair cost ($) Replacement cost($)
1 Small 2500 2.5 50 120 20 40
2 Small 2500 2.5 50 120 20 40
3 Small 2500 2.5 50 120 20 40
4 Small 2500 2.5 50 120 20 40
5 Small 2500 2.5 50 120 20 40
6 Small 2500 2.5 50 120 20 40
7 Small 2500 2.5 50 120 20 40
8 Small 2500 2.5 50 120 20 40
9 Small 2500 2.5 50 120 20 40
10 Small 2500 2.5 50 120 20 40
11 Small 2500 2.5 50 120 20 40
12 Medium 2400 2.6 50 120 50 100
13 Medium 2400 2.6 50 120 50 100
14 Medium 2400 2.6 50 120 50 100
15 Small 2500 2.5 50 120 20 40
16 Small 2500 2.5 50 120 20 40
17 Small 2500 2.5 50 120 20 40
18 Large 2400 2.4 50 120 120 240
19 Small 2500 2.5 50 120 20 40
20 Small 2500 2.5 50 120 20 40
21 Small 2500 2.5 50 120 20 40
22 Small 2500 2.5 50 120 20 40
23 Large 2400 2.4 50 120 120 240
24 Small 2500 2.5 50 120 20 40
25 Small 2500 2.5 50 120 20 40
26 Small 2500 2.5 50 120 20 40
27 Small 2500 2.5 50 120 20 40
28 Small 2500 2.5 50 120 20 40
29 Small 2500 2.5 50 120 20 40
30 Large 2400 2.4 50 120 120 240
31 Small 2500 2.5 50 120 20 40
32 Small 2500 2.5 50 120 20 40
33 Large 2400 2.4 50 120 120 240
34 Small 2500 2.5 50 120 20 40
35 Small 2500 2.5 50 120 20 40
Table 2.  Maintenance scheduling for bag filters
B/p12345678910111213
1 $\surd$
2 $\surd$
3 $\surd$
4 $\surd$
5 $\surd$
6 $\surd$
7 $\surd$
8 $\surd$
9 $\surd$
10 $\surd$
11 $\surd$
12 $\surd$
13 $\surd$
14 $\surd$
15 $\surd$
16 $\surd$
17 $\surd$
18 $\surd$
19 $\surd$
20 $\surd$
21 $\surd$
22 $\surd$
23 $\surd$
24 $\surd$
25 $\surd$
26 $\surd$
27 $\surd$
28 $\surd$
29 $\surd$
30 $\surd$
31 $\surd$
32 $\surd$
33 $\surd$
34 $\surd$
35 $\surd$
B/p12345678910111213
1 $\surd$
2 $\surd$
3 $\surd$
4 $\surd$
5 $\surd$
6 $\surd$
7 $\surd$
8 $\surd$
9 $\surd$
10 $\surd$
11 $\surd$
12 $\surd$
13 $\surd$
14 $\surd$
15 $\surd$
16 $\surd$
17 $\surd$
18 $\surd$
19 $\surd$
20 $\surd$
21 $\surd$
22 $\surd$
23 $\surd$
24 $\surd$
25 $\surd$
26 $\surd$
27 $\surd$
28 $\surd$
29 $\surd$
30 $\surd$
31 $\surd$
32 $\surd$
33 $\surd$
34 $\surd$
35 $\surd$
Table 3.  Maintenance scheduling based on 52 weeks and type of bag filters, system reliability
WeekSmall bag filterMedium bag filterLarge bag filterReliability at the end of week
1 97.2%
2 3 93.6%
3 97.6%
4 23, 30 91.3%
5 9 92.4%
6 26 92.0%
7 95.7%
8 95.4%
9 15 93.6%
10 96.0%
11 21, 28, 29 90.8%
12 1, 5, 35 91.1%
13 95.5%
14 94.8%
15 l 96.2%
16 93.9%
17 6 92.4%
18 94.6%
19 7, 20 90.4%
20 95.0%
21 96.2%
22 15 93.9%
23 24 93.4%
24 91.1%
25 92.2%
26 94.6%
27 2 90.4%
28 34 90.0%
29 91.7%
30 90.0%
31 16, 19 91.6%
32 2.5 93.2%
33 8 90.7%
34 25 91.3%
35 91.8%
36 33 90.7%
37 12, 13 90.0%
38 22 90.8%
39 14 91.2%
40 92.1%
41 92.0%
42 32 90.3%
43 93.0%
44 11 2500 2.5 91.0%
45 92.1%
46 91.9%
47 17, 31 90.2%
48 91.7%
49 3, 27 90.0%
50 93.4%
51 17 91.6%
52 95.7%
WeekSmall bag filterMedium bag filterLarge bag filterReliability at the end of week
1 97.2%
2 3 93.6%
3 97.6%
4 23, 30 91.3%
5 9 92.4%
6 26 92.0%
7 95.7%
8 95.4%
9 15 93.6%
10 96.0%
11 21, 28, 29 90.8%
12 1, 5, 35 91.1%
13 95.5%
14 94.8%
15 l 96.2%
16 93.9%
17 6 92.4%
18 94.6%
19 7, 20 90.4%
20 95.0%
21 96.2%
22 15 93.9%
23 24 93.4%
24 91.1%
25 92.2%
26 94.6%
27 2 90.4%
28 34 90.0%
29 91.7%
30 90.0%
31 16, 19 91.6%
32 2.5 93.2%
33 8 90.7%
34 25 91.3%
35 91.8%
36 33 90.7%
37 12, 13 90.0%
38 22 90.8%
39 14 91.2%
40 92.1%
41 92.0%
42 32 90.3%
43 93.0%
44 11 2500 2.5 91.0%
45 92.1%
46 91.9%
47 17, 31 90.2%
48 91.7%
49 3, 27 90.0%
50 93.4%
51 17 91.6%
52 95.7%
[1]

Soheil Dolatabadi. Weighted vertices optimizer (WVO): A novel metaheuristic optimization algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 461-479. doi: 10.3934/naco.2018029

[2]

Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial & Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243

[3]

Jianyu Cao, Weixin Xie. Optimization of a condition-based duration-varying preventive maintenance policy for the stockless production system based on queueing model. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-11. doi: 10.3934/jimo.2018085

[4]

Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585

[5]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[6]

Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-28. doi: 10.3934/jimo.2018097

[7]

Yi-Kuei Lin, Cheng-Ta Yeh. Reliability optimization of component assignment problem for a multistate network in terms of minimal cuts. Journal of Industrial & Management Optimization, 2011, 7 (1) : 211-227. doi: 10.3934/jimo.2011.7.211

[8]

Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial & Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469

[9]

A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for series-parallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial & Management Optimization, 2006, 2 (4) : 467-479. doi: 10.3934/jimo.2006.2.467

[10]

Chuanhao Guo, Erfang Shan, Wenli Yan. A superlinearly convergent hybrid algorithm for solving nonlinear programming. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1009-1024. doi: 10.3934/jimo.2016059

[11]

Zheng-Hai Huang, Jie Sun. A smoothing Newton algorithm for mathematical programs with complementarity constraints. Journal of Industrial & Management Optimization, 2005, 1 (2) : 153-170. doi: 10.3934/jimo.2005.1.153

[12]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[13]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-24. doi: 10.3934/jimo.2018077

[14]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018142

[15]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018134

[16]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[17]

Abdel-Rahman Hedar, Alaa Fahim. Filter-based genetic algorithm for mixed variable programming. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 99-116. doi: 10.3934/naco.2011.1.99

[18]

Gianni Di Pillo, Giampaolo Liuzzi, Stefano Lucidi. A primal-dual algorithm for nonlinear programming exploiting negative curvature directions. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 509-528. doi: 10.3934/naco.2011.1.509

[19]

Rong Hu, Ya-Ping Fang. A parametric simplex algorithm for biobjective piecewise linear programming problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 573-586. doi: 10.3934/jimo.2016032

[20]

Jinzhi Wang, Yuduo Zhang. Solving the seepage problems with free surface by mathematical programming method. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 351-357. doi: 10.3934/naco.2015.5.351

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]