doi: 10.3934/jimo.2018143

Interdependent demand in the two-period newsvendor problem

1. 

Department of Industrial Engineering, Yazd University, Yazd, Iran

2. 

Poznan University of Technology, Faculty of Engineering, Management, Poznan, Poland, IAM, METU, Ankara, Turkey

3. 

Department of Industrial Engineering, University of Science and Culture, Tehran, Iran

4. 

Department of Environment, College of Agriculture, Takestan Branch, Islamic Azad University, Takestan, Iran

* Corresponding author:Rezalotfi@stu.yazd.ac.ir

Received  March 2017 Revised  May 2018 Published  September 2018

The newsvendor problem is a classical task in inventory management. The present paper considers a two-period newsvendor problem where demand of different periods is interdependent (not independent), and seeks to follow this approach to develop a two-period newsvendor problem with unsatisfied demand or unsold quantity. Concerning the complexity of solution of multiple integrals, the problem is assessed for only two periods. In the course of a numerical solution, the probability distribution function of demand pertaining to each period is assumed to be given (in the form of a bivariate normal distribution). The optimal solution is presented in the form of the initial inventory level that maximizes the expected profit. Finally, all model parameters are subjected to a sensitivity analysis. This model can be used in a number of applications, such as procurement of raw materials in projects (e.g., construction, bridge-building and molding) where demand of different periods is interdependent. Proposed model takes into account interdependent demand oughts to provide a better solution than a model based on independent demand.

Citation: Reza Lotfi, Gerhard-Wilhelm Weber, S. Mehdi Sajadifar, Nooshin Mardani. Interdependent demand in the two-period newsvendor problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018143
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1992.

[2]

N. AltintasF. Erhun and S. Tayur, Quantity discounts under demand uncertainty, Management Science, 54 (2008), 777-792. doi: 10.1287/mnsc.1070.0829.

[3]

L. C. AlwanM. XuD. Q. Yao and X. Yue, The dynamic newsvendor model with correlated demand, Decision Sciences, 47 (2016), 11-30.

[4]

H. Behret and C. Kahraman, A multi-period newsvendor problem with pre-season extension under fuzzy demand, Journal of Business Economics and Management, 11 (2010), 613-629. doi: 10.3846/jbem.2010.30.

[5]

M. Bouakiz and M. J. Sobel, Inventory control with an exponential utility criterion, Operations Research, 40 (1992), 603-608. doi: 10.1287/opre.40.3.603.

[6]

A. BurnetasS. M. Gilbert and C. E. Smith, Quantity discounts in single-period supply contracts with asymmetric demand information, IIE Transactions, 39 (2007), 465-479.

[7]

J. M. Chen and H. L. Cheng, Effect of the price-dependent revenue-sharing mechanism in a decentralized supply chain, Central European Journal of Operations Research, 20 (2012), 299-317. doi: 10.1007/s10100-010-0182-3.

[8]

S. P. Chen and Y. H. Ho, Analysis of the newsboy problem with fuzzy demands and incremental discounts, International Journal of Production Economics, 129 (2011), 169-177. doi: 10.1016/j.ijpe.2010.09.014.

[9]

S. P. Chen and Y. H. Ho, Optimal inventory policy for the fuzzy newsboy problem with quantity discounts, Information Sciences, 228 (2013), 75-89. doi: 10.1016/j.ins.2012.12.015.

[10]

S. Ding and Y. Gao, The (σ, S) policy for uncertain multi-product newsboy problem, Expert Systems with Applications, 41 (2014), 3769-3776.

[11]

H. Gaspars-Wieloch, Newsvendor problem under complete uncertainty: A case of innovative products, Central European Journal of Operations Research, 25 (2017), 561-585. doi: 10.1007/s10100-016-0458-3.

[12]

G. A. HanasusantoD. KuhnS. W. Wallace and S. Zymler, Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Mathematical Programming, 152 (2015), 1-32. doi: 10.1007/s10107-014-0776-y.

[13]

D. HuangH. Zhou and Q. H. Zhao, A competitive multiple-product newsboy problem with partial product substitution, Omega, 39 (2011), 302-312. doi: 10.1016/j.omega.2010.07.008.

[14]

J. Kamburowski, The distribution-free newsboy problem under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112. doi: 10.1016/j.ejor.2014.01.066.

[15]

J. Kamburowski, The distribution-free newsboy problem and the demand skew, International Transactions in Operational Research, 22 (2015), 929-946. doi: 10.1111/itor.12139.

[16]

M. Khouja, The single-period (news-vendor) problem: literature review and suggestions for future research, Omega, 27 (1999), 537-553. doi: 10.1016/S0305-0483(99)00017-1.

[17]

K. Matsuyama, The multi-period newsboy problem, European Journal of Operational Research, 171 (2006), 170-188. doi: 10.1016/j.ejor.2004.08.030.

[18]

P. Mileff and K. Nehéz, Solving capacity constraint problems in a multi-item, multi-period newsvendor model, Proc. of microCAD, (2007), 169-176.

[19]

R. LotfiM. NayeriS. Sajadifar and N. Mardani, Determination of start times and ordering plans for two-period projects with interdependent demand in project-oriented organizations: A case study on molding industry, Journal of Project Management, 2 (2018a), 119-142. doi: 10.5267/j.jpm.2017.9.001.

[20]

R. LotfiA. MostafaeipourN. Mardani and S. Mardani, Investigation of wind farm location planning by considering budget constraints, International Journal of Sustainable Energy, 37 (2018), 799-817. doi: 10.1080/14786451.2018.1437160.

[21]

M. Fakhrzad and R. Lotfi, Green vendor managed inventory with backorder in two echelon supply chain with Epsilon-Constraint and NSGA-Ⅱ approach, Journal of Industrial Engineering Research in Production Systems, 5 (2018), 193-209. doi: 10.22084/ier.2017.11270.1509.

[22]

B. PalS. S Sana and K. Chaudhuri, A distribution-free newsvendor problem with nonlinear holding cost, International Journal of Systems Science, 46 (2015), 1269-1277. doi: 10.1080/00207721.2013.815828.

[23]

W. L. PearnR. H. SuM. W. Weng and C. H. Hsu, Optimal production run time for two-stage production system with imperfect processes and allowable shortages, Central European Journal of Operations Research, 19 (2011), 533-545. doi: 10.1007/s10100-010-0143-x.

[24]

G. Perakis and A. Sood, Competitive multi-period pricing with fixed inventories, (2004).

[25]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374. doi: 10.1016/j.ejor.2010.11.024.

[26]

P. Ray and M. Jenamani, Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach, Annals of Operations Research, 237 (2016), 237-262. doi: 10.1007/s10479-014-1649-8.

[27]

S. S. Sana, Price sensitive demand with random sales price--a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498. doi: 10.1080/00207721.2010.517856.

[28]

J. W. Tukey, Sufficiency, truncation and selection, The Annals of Mathematical Statistics, 20 (1949), 309-311. doi: 10.1214/aoms/1177730042.

[29]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105. doi: 10.1016/j.omega.2006.08.003.

[30]

B. Zhang and S. Du, Multi-product newsboy problem with limited capacity and outsourcing, European Journal of Operational Research, 202 (2010), 107-113. doi: 10.1016/j.ejor.2009.04.017.

[31]

B. Zhang and Z. Hua, A portfolio approach to multi-product newsboy problem with budget constraint, Computers & Industrial Engineering, 58 (2010), 759-765. doi: 10.1016/j.cie.2010.02.007.

[32]

G. Zhang, The multi-product newsboy problem with supplier quantity discounts and a budget constraint, European Journal of Operational Research, 206 (2010), 350-360. doi: 10.1016/j.ejor.2010.02.038.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1992.

[2]

N. AltintasF. Erhun and S. Tayur, Quantity discounts under demand uncertainty, Management Science, 54 (2008), 777-792. doi: 10.1287/mnsc.1070.0829.

[3]

L. C. AlwanM. XuD. Q. Yao and X. Yue, The dynamic newsvendor model with correlated demand, Decision Sciences, 47 (2016), 11-30.

[4]

H. Behret and C. Kahraman, A multi-period newsvendor problem with pre-season extension under fuzzy demand, Journal of Business Economics and Management, 11 (2010), 613-629. doi: 10.3846/jbem.2010.30.

[5]

M. Bouakiz and M. J. Sobel, Inventory control with an exponential utility criterion, Operations Research, 40 (1992), 603-608. doi: 10.1287/opre.40.3.603.

[6]

A. BurnetasS. M. Gilbert and C. E. Smith, Quantity discounts in single-period supply contracts with asymmetric demand information, IIE Transactions, 39 (2007), 465-479.

[7]

J. M. Chen and H. L. Cheng, Effect of the price-dependent revenue-sharing mechanism in a decentralized supply chain, Central European Journal of Operations Research, 20 (2012), 299-317. doi: 10.1007/s10100-010-0182-3.

[8]

S. P. Chen and Y. H. Ho, Analysis of the newsboy problem with fuzzy demands and incremental discounts, International Journal of Production Economics, 129 (2011), 169-177. doi: 10.1016/j.ijpe.2010.09.014.

[9]

S. P. Chen and Y. H. Ho, Optimal inventory policy for the fuzzy newsboy problem with quantity discounts, Information Sciences, 228 (2013), 75-89. doi: 10.1016/j.ins.2012.12.015.

[10]

S. Ding and Y. Gao, The (σ, S) policy for uncertain multi-product newsboy problem, Expert Systems with Applications, 41 (2014), 3769-3776.

[11]

H. Gaspars-Wieloch, Newsvendor problem under complete uncertainty: A case of innovative products, Central European Journal of Operations Research, 25 (2017), 561-585. doi: 10.1007/s10100-016-0458-3.

[12]

G. A. HanasusantoD. KuhnS. W. Wallace and S. Zymler, Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Mathematical Programming, 152 (2015), 1-32. doi: 10.1007/s10107-014-0776-y.

[13]

D. HuangH. Zhou and Q. H. Zhao, A competitive multiple-product newsboy problem with partial product substitution, Omega, 39 (2011), 302-312. doi: 10.1016/j.omega.2010.07.008.

[14]

J. Kamburowski, The distribution-free newsboy problem under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112. doi: 10.1016/j.ejor.2014.01.066.

[15]

J. Kamburowski, The distribution-free newsboy problem and the demand skew, International Transactions in Operational Research, 22 (2015), 929-946. doi: 10.1111/itor.12139.

[16]

M. Khouja, The single-period (news-vendor) problem: literature review and suggestions for future research, Omega, 27 (1999), 537-553. doi: 10.1016/S0305-0483(99)00017-1.

[17]

K. Matsuyama, The multi-period newsboy problem, European Journal of Operational Research, 171 (2006), 170-188. doi: 10.1016/j.ejor.2004.08.030.

[18]

P. Mileff and K. Nehéz, Solving capacity constraint problems in a multi-item, multi-period newsvendor model, Proc. of microCAD, (2007), 169-176.

[19]

R. LotfiM. NayeriS. Sajadifar and N. Mardani, Determination of start times and ordering plans for two-period projects with interdependent demand in project-oriented organizations: A case study on molding industry, Journal of Project Management, 2 (2018a), 119-142. doi: 10.5267/j.jpm.2017.9.001.

[20]

R. LotfiA. MostafaeipourN. Mardani and S. Mardani, Investigation of wind farm location planning by considering budget constraints, International Journal of Sustainable Energy, 37 (2018), 799-817. doi: 10.1080/14786451.2018.1437160.

[21]

M. Fakhrzad and R. Lotfi, Green vendor managed inventory with backorder in two echelon supply chain with Epsilon-Constraint and NSGA-Ⅱ approach, Journal of Industrial Engineering Research in Production Systems, 5 (2018), 193-209. doi: 10.22084/ier.2017.11270.1509.

[22]

B. PalS. S Sana and K. Chaudhuri, A distribution-free newsvendor problem with nonlinear holding cost, International Journal of Systems Science, 46 (2015), 1269-1277. doi: 10.1080/00207721.2013.815828.

[23]

W. L. PearnR. H. SuM. W. Weng and C. H. Hsu, Optimal production run time for two-stage production system with imperfect processes and allowable shortages, Central European Journal of Operations Research, 19 (2011), 533-545. doi: 10.1007/s10100-010-0143-x.

[24]

G. Perakis and A. Sood, Competitive multi-period pricing with fixed inventories, (2004).

[25]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374. doi: 10.1016/j.ejor.2010.11.024.

[26]

P. Ray and M. Jenamani, Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach, Annals of Operations Research, 237 (2016), 237-262. doi: 10.1007/s10479-014-1649-8.

[27]

S. S. Sana, Price sensitive demand with random sales price--a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498. doi: 10.1080/00207721.2010.517856.

[28]

J. W. Tukey, Sufficiency, truncation and selection, The Annals of Mathematical Statistics, 20 (1949), 309-311. doi: 10.1214/aoms/1177730042.

[29]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105. doi: 10.1016/j.omega.2006.08.003.

[30]

B. Zhang and S. Du, Multi-product newsboy problem with limited capacity and outsourcing, European Journal of Operational Research, 202 (2010), 107-113. doi: 10.1016/j.ejor.2009.04.017.

[31]

B. Zhang and Z. Hua, A portfolio approach to multi-product newsboy problem with budget constraint, Computers & Industrial Engineering, 58 (2010), 759-765. doi: 10.1016/j.cie.2010.02.007.

[32]

G. Zhang, The multi-product newsboy problem with supplier quantity discounts and a budget constraint, European Journal of Operational Research, 206 (2010), 350-360. doi: 10.1016/j.ejor.2010.02.038.

Figure 1.  Process of implementation of the conceptual model
Figure 2.  Chart of Differences between the proposed model and Matsuyama [17]
Figure 3.  Chart of the ratio ($\alpha $)
Figure 4.  Chart of the ratio ($\beta $)
Figure 5.  Chart of the ratio ($\delta $)
Table 1.  Classification of the literature
Reference Fuzzy Single-period Multi-period Multi-product Risk Demand Product Market Discount
Bouakiz and Sobel [5] 1 1 Independent
Perakis and Sood [24] 1 Independent Perishable Competitive
Matsuyama [17] 1 Independent
Mileff and Nehéz [18] 1 1 Independent
Burnetas et al. [6] 1 Independent Incremental
Altintas et al. [2] 1 Independent All-Unit
Wang and Webster [29] 1 1 Independent
Behret and Kahraman [4] 1 1 Independent
Chen and Ho [8] 1 1 Independent
Zhang [32] 1 Independent All-Units
Zhang and Du [30] 1 Independent
Zhang and Hua [31] 1 Independent
Huang et al. [13] 1 Independent
Sana [27] 1 Independent
Chen and Ho [9] 1 1 Independent
Ray and Jenamani [26] 1 1 Independent
Ding and Gao [10] 1 Independent
Kamburowski [14] 1 Independent
Kamburowski [14] 1 Independent
Pal and Sana [22] 1 Independent
Hanasusanto et al. [12] 1 1 Interdependent
product
Alwan et al. [3] 1 Interdependent
Summary 3 10 6 7 4 20 Independent
2 Interdependent
1 Perishable 1 Competitive 1 Incremental
2 All-Unit
The present study 1 Interdependent
Demand
Reference Fuzzy Single-period Multi-period Multi-product Risk Demand Product Market Discount
Bouakiz and Sobel [5] 1 1 Independent
Perakis and Sood [24] 1 Independent Perishable Competitive
Matsuyama [17] 1 Independent
Mileff and Nehéz [18] 1 1 Independent
Burnetas et al. [6] 1 Independent Incremental
Altintas et al. [2] 1 Independent All-Unit
Wang and Webster [29] 1 1 Independent
Behret and Kahraman [4] 1 1 Independent
Chen and Ho [8] 1 1 Independent
Zhang [32] 1 Independent All-Units
Zhang and Du [30] 1 Independent
Zhang and Hua [31] 1 Independent
Huang et al. [13] 1 Independent
Sana [27] 1 Independent
Chen and Ho [9] 1 1 Independent
Ray and Jenamani [26] 1 1 Independent
Ding and Gao [10] 1 Independent
Kamburowski [14] 1 Independent
Kamburowski [14] 1 Independent
Pal and Sana [22] 1 Independent
Hanasusanto et al. [12] 1 1 Interdependent
product
Alwan et al. [3] 1 Interdependent
Summary 3 10 6 7 4 20 Independent
2 Interdependent
1 Perishable 1 Competitive 1 Incremental
2 All-Unit
The present study 1 Interdependent
Demand
Table 2.  Conceptual Model
Description Period $j$
Status of demand $L\leq x_j\leq l_j\leq N$ $L\leq l_j\leq x_j\leq N$
Sale income $q_jx_j$ $q_jl_j$
Buying cost $p_jl_j$ $p_jl_j$
Unsold $\left(l_j-x_j\right)$ 0
Stocked amount $\alpha (l_j-x_j)$ 0
Holding cost of amount unsold ${{s}}_j\alpha (l_j -x_j )$ 0
Unsatisfied demand 0 $\beta \left({x_j -{l}}_j\right)$
Penalty for unsatisfied demand 0 $\pi (x_j -l_j )$
Order of period j+1 $l_{j+1}-\alpha (l_j -x_j )$ $l_{j+1}+\beta ({x_j-l}_j)$
Description Period $j$
Status of demand $L\leq x_j\leq l_j\leq N$ $L\leq l_j\leq x_j\leq N$
Sale income $q_jx_j$ $q_jl_j$
Buying cost $p_jl_j$ $p_jl_j$
Unsold $\left(l_j-x_j\right)$ 0
Stocked amount $\alpha (l_j-x_j)$ 0
Holding cost of amount unsold ${{s}}_j\alpha (l_j -x_j )$ 0
Unsatisfied demand 0 $\beta \left({x_j -{l}}_j\right)$
Penalty for unsatisfied demand 0 $\pi (x_j -l_j )$
Order of period j+1 $l_{j+1}-\alpha (l_j -x_j )$ $l_{j+1}+\beta ({x_j-l}_j)$
Table 3.  Differences between the proposed model and [17]
Problem Expected Profit ($H^*$) of Proposed Model Corrolation = -0.5 Expected Profit of Matsuyama [17] Correlation = 0 Gap
P1 866.59 790.38 8.79%
P2 2173.1 1983 8.75%
P3 3486.3 3181.7 8.74%
P4 4801.6 4382.3 8.73%
P5 5459.7 4983 8.73%
P6 6118 5583.9 8.73%
Mean(Gap) 8.75%
Variance(Gap) 0.0000061%
Problem Expected Profit ($H^*$) of Proposed Model Corrolation = -0.5 Expected Profit of Matsuyama [17] Correlation = 0 Gap
P1 866.59 790.38 8.79%
P2 2173.1 1983 8.75%
P3 3486.3 3181.7 8.74%
P4 4801.6 4382.3 8.73%
P5 5459.7 4983 8.73%
P6 6118 5583.9 8.73%
Mean(Gap) 8.75%
Variance(Gap) 0.0000061%
Table 4.  Sensitivity analysis of the proposed model
Parameter Result of differentiation Proof
$\alpha $ $\frac{\partial }{\partial \alpha }H\left(l_1, l_2, x_1, x_2\right)=\frac{p_2-s_1}{\left|p_2-s_1\right|}$ Appendix 3
Proof 2
$\beta $ $\frac{\partial }{\partial \beta }H\left(l_1, l_2, x_1, x_2\right)=\frac{\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2}{\left|\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2\right|}$ Appendix 3
Proof 2
$\delta $ $\frac{\partial }{\partial \delta }H\left(l_1, l_2, x_1, x_2\right)=\frac{q_1-q_2}{\left|q_1-q_2\right|}$ Appendix 3
Proof 2
$\pi $ $\frac{\partial }{\partial \pi }H\left(l_1, l_2, x_1, x_2\right)< 0, \;\;\;\;\forall \pi $ Appendix 3
Proof 2
$q_1$ $\frac{\partial }{\partial q_1}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_1$ Appendix 3
Proof 3
$q_2$ $\frac{\partial }{\partial q_2}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_2$ Appendix 3
Proof 3
$p_1$ $\frac{\partial }{\partial p_1}H\left(l_1, l_2, x_1, x_2\right)<0, \;\;\;\; \forall \ p_1\ \ \ \ \ $ Appendix 3
Proof 4
$p_2$ $\frac{\partial }{\partial p_2}H\left(l_1, l_2, x_1, x_2\right) =-l_2+\alpha \left(l_1-\mu _1\right)$
$+\left(\alpha -\beta \right)\int^{\infty }_{ -\infty }{\int^{\infty }_{l_1}{\left({x_1-l}_1\right)f\left(x_1, x_2\right)dx_1dx_2}}$
Appendix 3
Proof 4
Parameter Result of differentiation Proof
$\alpha $ $\frac{\partial }{\partial \alpha }H\left(l_1, l_2, x_1, x_2\right)=\frac{p_2-s_1}{\left|p_2-s_1\right|}$ Appendix 3
Proof 2
$\beta $ $\frac{\partial }{\partial \beta }H\left(l_1, l_2, x_1, x_2\right)=\frac{\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2}{\left|\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2\right|}$ Appendix 3
Proof 2
$\delta $ $\frac{\partial }{\partial \delta }H\left(l_1, l_2, x_1, x_2\right)=\frac{q_1-q_2}{\left|q_1-q_2\right|}$ Appendix 3
Proof 2
$\pi $ $\frac{\partial }{\partial \pi }H\left(l_1, l_2, x_1, x_2\right)< 0, \;\;\;\;\forall \pi $ Appendix 3
Proof 2
$q_1$ $\frac{\partial }{\partial q_1}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_1$ Appendix 3
Proof 3
$q_2$ $\frac{\partial }{\partial q_2}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_2$ Appendix 3
Proof 3
$p_1$ $\frac{\partial }{\partial p_1}H\left(l_1, l_2, x_1, x_2\right)<0, \;\;\;\; \forall \ p_1\ \ \ \ \ $ Appendix 3
Proof 4
$p_2$ $\frac{\partial }{\partial p_2}H\left(l_1, l_2, x_1, x_2\right) =-l_2+\alpha \left(l_1-\mu _1\right)$
$+\left(\alpha -\beta \right)\int^{\infty }_{ -\infty }{\int^{\infty }_{l_1}{\left({x_1-l}_1\right)f\left(x_1, x_2\right)dx_1dx_2}}$
Appendix 3
Proof 4
Table 5.  Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \alpha \leq 1$)
$\alpha $ $H^*$ $l^*_1$ $l^*_2$
20% 861.47 190.73 240.88
40% 862.27 195.58 240.88
60% 863.3 201.73 240.88
80% 864.65 209.82 240.88
100% 866.59 220.99 240.88
$\alpha $ $H^*$ $l^*_1$ $l^*_2$
20% 861.47 190.73 240.88
40% 862.27 195.58 240.88
60% 863.3 201.73 240.88
80% 864.65 209.82 240.88
100% 866.59 220.99 240.88
Table 6.  Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \beta \leq 1$)
$\beta $ $H^*$ $l^*_1$ $l^*_2$
20% 858.4 270.2 240.88
40% 859.07 266.14 240.88
60% 860.13 259.76 240.88
80% 862.04 248.29 240.88
100% 866.59 220.99 240.88
$\beta $ $H^*$ $l^*_1$ $l^*_2$
20% 858.4 270.2 240.88
40% 859.07 266.14 240.88
60% 860.13 259.76 240.88
80% 862.04 248.29 240.88
100% 866.59 220.99 240.88
Table 7.  Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \delta \leq 1$)
$\delta $ $H^*$ $l^*_1$ $l^*_2$
0% 1532.1 271.1 240.88
20% 1532.5 274.55 240.88
40% 1533.1 271.1 240.88
60% 1534 265.4 240.88
80% 1535.9 254.17 240.88
100% 1541.3 220.98 240.88
$\delta $ $H^*$ $l^*_1$ $l^*_2$
0% 1532.1 271.1 240.88
20% 1532.5 274.55 240.88
40% 1533.1 271.1 240.88
60% 1534 265.4 240.88
80% 1535.9 254.17 240.88
100% 1541.3 220.98 240.88
[1]

Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial & Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055

[2]

Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial & Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425

[3]

Yuwei Shen, Jinxing Xie, Tingting Li. The risk-averse newsvendor game with competition on demand. Journal of Industrial & Management Optimization, 2016, 12 (3) : 931-947. doi: 10.3934/jimo.2016.12.931

[4]

Taofeng Ye, Shaohui Ma. Discount-offering and demand-rejection decisions for substitutable products with different profit levels. Journal of Industrial & Management Optimization, 2016, 12 (1) : 45-71. doi: 10.3934/jimo.2016.12.45

[5]

Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299

[6]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[7]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[8]

M. M. Ali, L. Masinga. A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change. Journal of Industrial & Management Optimization, 2007, 3 (1) : 139-154. doi: 10.3934/jimo.2007.3.139

[9]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

[10]

Shuichiro Senda, Hiroyuki Masuyama, Shoji Kasahara. A stochastic fluid model for on-demand peer-to-peer streaming services. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 611-626. doi: 10.3934/naco.2011.1.611

[11]

Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa. Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks & Heterogeneous Media, 2015, 10 (1) : 1-16. doi: 10.3934/nhm.2015.10.1

[12]

María Suárez-Taboada, Carlos Vázquez. Numerical methods for PDE models related to pricing and expected lifetime of an extraction project under uncertainty. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018254

[13]

Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial & Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105

[14]

Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080

[15]

Konstantina Skouri, Ioannis Konstantaras. Two-warehouse inventory models for deteriorating products with ramp type demand rate. Journal of Industrial & Management Optimization, 2013, 9 (4) : 855-883. doi: 10.3934/jimo.2013.9.855

[16]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[17]

Wei Liu, Shiji Song, Cheng Wu. Single-period inventory model with discrete stochastic demand based on prospect theory. Journal of Industrial & Management Optimization, 2012, 8 (3) : 577-590. doi: 10.3934/jimo.2012.8.577

[18]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002

[19]

Gang Qian, Deren Han, Hongjin He. Congestion control with pricing in the absence of demand and cost functions: An improved trial and error method. Journal of Industrial & Management Optimization, 2010, 6 (1) : 103-121. doi: 10.3934/jimo.2010.6.103

[20]

Yanyi Xu, Arnab Bisi, Maqbool Dada. New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost. Journal of Industrial & Management Optimization, 2017, 13 (2) : 931-945. doi: 10.3934/jimo.2016054

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]