doi: 10.3934/jimo.2018140

Necessary optimality condition for trilevel optimization problem

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

* Corresponding author

Received  January 2017 Revised  September 2017 Published  September 2018

Fund Project: This work was supported by the Natural Science Foundation of China (11871383, 11401487), and the Basic and Advanced Research Project of Chongqing(cstc2016jcyjA0239)

This paper mainly studies the optimality conditions for a class of trilevel optimization problem, of which all levels are nonlinear programs. We firstly transform this problem into an auxiliary bilevel optimization problem by applying KKT approach to the lower-level problem. Then we obtain a necessary optimality condition via the differential calculus of Mordukhovich. Finally, a theorem for existence of optimal solution is derived via Weierstrass Theorem.

Citation: Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018140
References:
[1]

N. AlguacilA. Delgadillo and J. M. Arroyo, A trilevel programming approach for electric grid defense planning, Computers and Operations Research, 41 (2014), 282-290. doi: 10.1016/j.cor.2013.06.009.

[2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, A Wiley-Interscience Publication, New York, 1984.
[3]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-linear Parametric Optimization, Birkha"user Verlag, Basel-Boston, Mass., 1983.

[4]

J. F. Bard, An investigation of the linear three level programming problem, IEEE Transactions on Systems, Man and Cybernetics, 5 (1984), 711-717. doi: 10.1109/TSMC.1984.6313291.

[5]

B. Si and Z. Gao, Optimal model for passenger transport pricing under the condition of market competition, Journal of Transportation Systems Engineering and Information Technology, 1 (2007), 72-78. doi: 10.1016/S1570-6672(07)60009-9.

[6]

X. ChiZ. Wan and Z. Hao, Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem, Journal of Industrial and Management Optimization, 11 (2015), 1111-1125. doi: 10.3934/jimo.2015.11.1111.

[7]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical programming, 131 (2012), 37-48. doi: 10.1007/s10107-010-0342-1.

[8]

S. DempeB. S. Mordukhovich and A. B. Zemkoho, Sensitivity analysis for two-level value functions with applications to bilevel programming, SIAM Journal on Optimization, 22 (2012), 1309-1343. doi: 10.1137/110845197.

[9]

S. Dempe and A. B. Zemkoho, The generalized mangasarian-fromowitz constraint qualification and optimality conditions for bilevel programs, Journal of Optimization Theory and Applications, 148 (2011), 46-68. doi: 10.1007/s10957-010-9744-8.

[10]

S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions, Mathematical Programming, 138 (2013), 447-473. doi: 10.1007/s10107-011-0508-5.

[11]

L. GuoG. H. LinJ. J. Ye and J. Zhang, Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints, SIAM Journal on Optimization, 24 (2014), 1206-1237. doi: 10.1137/130929783.

[12]

J. HanJ. LuY. Hu and G. Zhang, Tri-level decision-making with multiple followers: Model, algorithm and case study, Information Sciences, 311 (2015), 182-204. doi: 10.1016/j.ins.2015.03.043.

[13]

C. HuangD. Fang and Z. Wan, An interactive intuitionistic fuzzy method for multilevel linear programming problems, Wuhan University Journal of Natural Sciences, 20 (2015), 113-118. doi: 10.1007/s11859-015-1068-y.

[14]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels programs being multiobjective, Pacific journal of optimiization, 13 (2017), 421-441.

[15]

O. L. Mangasarian, Nonlinear Programming SIAM Classics in Applied Methematic, volume 10, 1969.

[16]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, Springer Science and Business Media, 2006. doi: 10.1007/3-540-31247-1.

[17]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317. Springer Science and Business Media, 2009.

[18]

Z. WanL. Mao and G. Wang, Estimation of distribution algorithm for a class of nonlinear bilevel programming problems, Information Sciences, 256 (2014), 184-196. doi: 10.1016/j.ins.2013.09.021.

[19]

Z. WanG. Wang and B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems, Swarm and Evolutionary Computation, 8 (2013), 26-32. doi: 10.1016/j.swevo.2012.08.001.

[20]

D. White, Penalty function approach to linear trilevel programming, Journal of Optimization Theory and Applications, 93 (1997), 183-197. doi: 10.1023/A:1022610103712.

[21]

H. Xu and B. Li, Dynamic cloud pricing for revenue maximization, IEEE Transactions on Cloud Computing, 1 (2013), 158-171.

[22]

J. J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Research, 36 (2011), 165-184. doi: 10.1287/moor.1100.0480.

[23]

G. Zhang, J. Lu and Y. Gao, Multi-level Decision Making, Springer-Verlag Berlin Heidelberg, 2015.

[24]

G. ZhangJ. LuJ. Montero and Y. Zeng, Model, solution concept, and kth-best algorithm for linear trilevel programming, Information Sciences, 180 (2010), 481-492. doi: 10.1016/j.ins.2009.10.013.

[25]

Z. Zhang, G. Zhang, J. Lu and C. Guo, A fuzzy tri-level decision making algorithm and its application in supply chain, The 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT2013), Milan, Italy, 2013,154-160. doi: 10.2991/eusflat.2013.22.

[26]

Y. ZhengJ. Liu and Z. Wan, Interactive fuzzy decision making method for solving bilevel programming problem, Applied Mathematical Modelling, 38 (2014), 3136-3141. doi: 10.1016/j.apm.2013.11.008.

[27]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547. doi: 10.3934/jimo.2015.11.529.

show all references

References:
[1]

N. AlguacilA. Delgadillo and J. M. Arroyo, A trilevel programming approach for electric grid defense planning, Computers and Operations Research, 41 (2014), 282-290. doi: 10.1016/j.cor.2013.06.009.

[2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, A Wiley-Interscience Publication, New York, 1984.
[3]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-linear Parametric Optimization, Birkha"user Verlag, Basel-Boston, Mass., 1983.

[4]

J. F. Bard, An investigation of the linear three level programming problem, IEEE Transactions on Systems, Man and Cybernetics, 5 (1984), 711-717. doi: 10.1109/TSMC.1984.6313291.

[5]

B. Si and Z. Gao, Optimal model for passenger transport pricing under the condition of market competition, Journal of Transportation Systems Engineering and Information Technology, 1 (2007), 72-78. doi: 10.1016/S1570-6672(07)60009-9.

[6]

X. ChiZ. Wan and Z. Hao, Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem, Journal of Industrial and Management Optimization, 11 (2015), 1111-1125. doi: 10.3934/jimo.2015.11.1111.

[7]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical programming, 131 (2012), 37-48. doi: 10.1007/s10107-010-0342-1.

[8]

S. DempeB. S. Mordukhovich and A. B. Zemkoho, Sensitivity analysis for two-level value functions with applications to bilevel programming, SIAM Journal on Optimization, 22 (2012), 1309-1343. doi: 10.1137/110845197.

[9]

S. Dempe and A. B. Zemkoho, The generalized mangasarian-fromowitz constraint qualification and optimality conditions for bilevel programs, Journal of Optimization Theory and Applications, 148 (2011), 46-68. doi: 10.1007/s10957-010-9744-8.

[10]

S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions, Mathematical Programming, 138 (2013), 447-473. doi: 10.1007/s10107-011-0508-5.

[11]

L. GuoG. H. LinJ. J. Ye and J. Zhang, Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints, SIAM Journal on Optimization, 24 (2014), 1206-1237. doi: 10.1137/130929783.

[12]

J. HanJ. LuY. Hu and G. Zhang, Tri-level decision-making with multiple followers: Model, algorithm and case study, Information Sciences, 311 (2015), 182-204. doi: 10.1016/j.ins.2015.03.043.

[13]

C. HuangD. Fang and Z. Wan, An interactive intuitionistic fuzzy method for multilevel linear programming problems, Wuhan University Journal of Natural Sciences, 20 (2015), 113-118. doi: 10.1007/s11859-015-1068-y.

[14]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels programs being multiobjective, Pacific journal of optimiization, 13 (2017), 421-441.

[15]

O. L. Mangasarian, Nonlinear Programming SIAM Classics in Applied Methematic, volume 10, 1969.

[16]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, Springer Science and Business Media, 2006. doi: 10.1007/3-540-31247-1.

[17]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317. Springer Science and Business Media, 2009.

[18]

Z. WanL. Mao and G. Wang, Estimation of distribution algorithm for a class of nonlinear bilevel programming problems, Information Sciences, 256 (2014), 184-196. doi: 10.1016/j.ins.2013.09.021.

[19]

Z. WanG. Wang and B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems, Swarm and Evolutionary Computation, 8 (2013), 26-32. doi: 10.1016/j.swevo.2012.08.001.

[20]

D. White, Penalty function approach to linear trilevel programming, Journal of Optimization Theory and Applications, 93 (1997), 183-197. doi: 10.1023/A:1022610103712.

[21]

H. Xu and B. Li, Dynamic cloud pricing for revenue maximization, IEEE Transactions on Cloud Computing, 1 (2013), 158-171.

[22]

J. J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Research, 36 (2011), 165-184. doi: 10.1287/moor.1100.0480.

[23]

G. Zhang, J. Lu and Y. Gao, Multi-level Decision Making, Springer-Verlag Berlin Heidelberg, 2015.

[24]

G. ZhangJ. LuJ. Montero and Y. Zeng, Model, solution concept, and kth-best algorithm for linear trilevel programming, Information Sciences, 180 (2010), 481-492. doi: 10.1016/j.ins.2009.10.013.

[25]

Z. Zhang, G. Zhang, J. Lu and C. Guo, A fuzzy tri-level decision making algorithm and its application in supply chain, The 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT2013), Milan, Italy, 2013,154-160. doi: 10.2991/eusflat.2013.22.

[26]

Y. ZhengJ. Liu and Z. Wan, Interactive fuzzy decision making method for solving bilevel programming problem, Applied Mathematical Modelling, 38 (2014), 3136-3141. doi: 10.1016/j.apm.2013.11.008.

[27]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547. doi: 10.3934/jimo.2015.11.529.

[1]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[2]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[3]

Yibing Lv, Zhongping Wan. Linear bilevel multiobjective optimization problem: Penalty approach. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-11. doi: 10.3934/jimo.2018092

[4]

Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881

[5]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[6]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[7]

Sebastian Albrecht, Marion Leibold, Michael Ulbrich. A bilevel optimization approach to obtain optimal cost functions for human arm movements. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 105-127. doi: 10.3934/naco.2012.2.105

[8]

Dan Li, Li-Ping Pang, Fang-Fang Guo, Zun-Quan Xia. An alternating linearization method with inexact data for bilevel nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 859-869. doi: 10.3934/jimo.2014.10.859

[9]

Michael Hintermüller, Tao Wu. Bilevel optimization for calibrating point spread functions in blind deconvolution. Inverse Problems & Imaging, 2015, 9 (4) : 1139-1169. doi: 10.3934/ipi.2015.9.1139

[10]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[11]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-21. doi: 10.3934/jimo.2018101

[12]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[13]

Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131

[14]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-19. doi: 10.3934/jimo.2018089

[15]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[16]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[17]

Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1701-1721. doi: 10.3934/jimo.2017014

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[20]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (25)
  • HTML views (155)
  • Cited by (0)

Other articles
by authors

[Back to Top]