doi: 10.3934/jimo.2018133

Extreme values problem of uncertain heat equation

School of Information Technology & Management, University of International, Business & Economics, Beijing 100029, China

* Corresponding author: Yaodong Ni

Received  March 2018 Revised  April 2018 Published  August 2018

Fund Project: The second author is supported by National Natural Science Foundation of China (Grant No. 71471038)

Uncertain heat equation is a class of uncertain partial differential equations involving Liu processes. This paper first gives the uncertainty distributions and the inverse uncertainty distributions of extreme values of solutions for uncertain heat equations. Numerical methods are designed to gain the inverse uncertainty distributions of extreme values of solutions.

Citation: Xiangfeng Yang, Yaodong Ni. Extreme values problem of uncertain heat equation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018133
References:
[1]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81. doi: 10.1007/s10700-010-9073-2.

[2]

X. Chen and J. Gao, Uncertain term structure model of interest rate, Soft Computing, 17 (2013), 597-604. doi: 10.1007/s00500-012-0927-0.

[3]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007.

[4]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.

[5]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10. doi: 10.1007/978-3-662-44354-5.

[6]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010.

[7]

B. Liu, Toward uncertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.

[8]

B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optimization and Decision Making, 13 (2014), 259-271. doi: 10.1007/s10700-014-9181-5.

[9]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51. doi: 10.1002/int.21680.

[10]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.

[11]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826. doi: 10.1109/TFUZZ.2015.2486809.

[12]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379-403. doi: 10.1007/s10700-016-9253-9.

[13]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725. doi: 10.1007/s12652-017-0479-3.

[14]

X. Yang, A numerical method for solving uncertain heat equation, Applied Mathematics and Computation, 329 (2018), 92-104. doi: 10.1016/j.amc.2018.01.055.

[15]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent & Fuzzy Systems, 25 (2013), 825-832.

[16]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.

show all references

References:
[1]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81. doi: 10.1007/s10700-010-9073-2.

[2]

X. Chen and J. Gao, Uncertain term structure model of interest rate, Soft Computing, 17 (2013), 597-604. doi: 10.1007/s00500-012-0927-0.

[3]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007.

[4]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.

[5]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10. doi: 10.1007/978-3-662-44354-5.

[6]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010.

[7]

B. Liu, Toward uncertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.

[8]

B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optimization and Decision Making, 13 (2014), 259-271. doi: 10.1007/s10700-014-9181-5.

[9]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51. doi: 10.1002/int.21680.

[10]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.

[11]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826. doi: 10.1109/TFUZZ.2015.2486809.

[12]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379-403. doi: 10.1007/s10700-016-9253-9.

[13]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725. doi: 10.1007/s12652-017-0479-3.

[14]

X. Yang, A numerical method for solving uncertain heat equation, Applied Mathematics and Computation, 329 (2018), 92-104. doi: 10.1016/j.amc.2018.01.055.

[15]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent & Fuzzy Systems, 25 (2013), 825-832.

[16]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.

Figure 1.  Inverse Uncertainty Distributions of Extreme Values in Example 4.1
Figure 2.  Inverse Uncertainty Distributions of Extreme Values in Example 4.2
[1]

Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689

[2]

Maria José Pacifico, Fan Yang. Hitting times distribution and extreme value laws for semi-flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5861-5881. doi: 10.3934/dcds.2017255

[3]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[4]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[5]

Zhongming Chen, Liqun Qi. Circulant tensors with applications to spectral hypergraph theory and stochastic process. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1227-1247. doi: 10.3934/jimo.2016.12.1227

[6]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[7]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[8]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[9]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks & Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

[10]

Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169

[11]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[12]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[13]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[14]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic & Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[15]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[16]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[17]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[18]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[19]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[20]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]