doi: 10.3934/jimo.2018130

Optimal investment and consumption in the market with jump risk and capital gains tax

1. 

College of Finance and Statistics, Hunan University, Changsha 410079, China

2. 

School of Management, Zhejiang University, Hangzhou 310085, China

* Corresponding author: Weidong Xu. Tel.: +86-0571-88206867

Received  March 2018 Revised  May 2018 Published  August 2018

This paper investigates the problem of dynamic investment and consumption in a market, where a risky asset evolves with jumps and capital gains are taxed. In addition, the investor's behavior of tax evasion is taken into account, and tax evasion is subject to penalty when it is uncovered by audits. Using dynamic programming approach, we derive an analytical solution for an investor with the CRRA utility. We find the following: (1) jumps in the risky asset do not affect the optimal tax evasion strategy; (2) jump risk lessens the optimal fraction of wealth in the risky asset; (3) tax evasion can be reduced by increasing the fine and/or the frequency of tax audits; (4) the effects of the jumps, audits and penalty on the optimal consumption are determined by the degree of risk aversion of the investor.

Citation: Yong Ma, Shiping Shan, Weidong Xu. Optimal investment and consumption in the market with jump risk and capital gains tax. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018130
References:
[1]

Y. Ait-SahaliaJ. Cacho-Diaz and R. J. Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, 117 (2015), 585-606.

[2]

G. BakshiC. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049. doi: 10.1111/j.1540-6261.1997.tb02749.x.

[3]

O. E. Barndorff-Nielsen and N. Shephard, Econometrics of testing for jumps in financial economics using bipower variation, Journal of Financial Econometrics, 4 (2006), 1-30.

[4]

D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, Review of Financial Studies, 9 (1996), 69-107. doi: 10.1093/rfs/9.1.69.

[5]

J. CaiX. Chen and M. Dai, Portfolio selection with capital gains tax, recursive utility, and regime switching, Management Science, 64 (2017), 2308-2324.

[6]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal consumption and investment with capital gains taxes, Review of Financial Studies, 14 (2001), 583-616.

[7]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal asset location and allocation with taxable and tax-deferred investing, Journal of Finance, 59 (2004), 999-1037.

[8]

M. DaiH. LiuC. Yang and Y. Zhong, Optimal tax timing with asymmetric long-term/short-term capital gains tax, Review of Financial Studies, 28 (2015), 2687-2721. doi: 10.1093/rfs/hhv024.

[9]

S. R. Das and R. Uppal, Systemic risk and international portfolio choice, Journal of Finance, 59 (2004), 2809-2834.

[10]

B. Eraker, Do stock prices and volatility jump? Reconciling evidence from spot and option prices, Journal of Finance, 59 (2004), 1367-1403. doi: 10.1111/j.1540-6261.2004.00666.x.

[11]

B. ErakerM. Johannes and N. Polson, The impact of jumps in volatility and returns, Journal of Finance, 58 (2003), 1269-1300. doi: 10.1111/1540-6261.00566.

[12]

M. F. GallmeyerR. Kaniel and S. Tompaidis, Tax management strategies with multiple risky assets, Journal of Financial Economics, 80 (2006), 243-291.

[13]

Y. Hong and X. Jin, Semi-analytical solutions for dynamic portfolio choice in jump-diffusion models and the optimal bond-stock mix, European Journal of Operational Research, 265 (2018), 389-398. doi: 10.1016/j.ejor.2017.08.010.

[14]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.

[15]

S. S. Lee and P. A. Mykland, Jumps in financial markets: A new nonparametric test and jump dynamics, Review of Financial Studies, 21 (2007), 2535-2563.

[16]

R. Levaggi and F. Menoncin, Optimal dynamic tax evasion: A portfolio approach, Journal of Economic Behavior and Organization, 124 (2016), 115-129.

[17]

J. LiuF. A. Longstaff and J. Pan, Dynamic asset allocation with event risk, Journal of Finance, 58 (2003), 231-259.

[18]

M. Marekwica, Optimal tax-timing and asset allocation when tax rebates on capital losses are limited, Journal of Banking and Finance, 36 (2012), 2048-2063.

[19]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144. doi: 10.1016/0304-405X(76)90022-2.

[20]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413. doi: 10.1016/0022-0531(71)90038-X.

[21]

H. Nagai, H-J-B equations of optimal consumption-investment and verification theorems, Applied Mathematics and Optimization, 71 (2015), 279-311. doi: 10.1007/s00245-014-9258-0.

[22]

J. Pan, The jump-risk premia implicit in options: Evidence from an integrated time-series study, Journal of Financial Economics, 63 (2002), 3-50. doi: 10.1016/S0304-405X(01)00088-5.

[23]

L. C. G. Rogers, Optimal Investment, Springer-Verlag, Berlin, 2013. doi: 10.1007/978-3-642-35202-7.

[24]

I. B. TaharH. M. Soner and N. Touzi, The dynamic programming equation for the problem of optimal investment under capital gains taxes, SIAM Journal on Control and Optimization, 46 (2007), 1779-1801. doi: 10.1137/050646044.

[25]

I. B. TaharH. M. Soner and N. Touzi, Merton problem with taxes: Characterization, computation, and approximation, SIAM Journal on Financial Mathematics, 1 (2010), 366-395. doi: 10.1137/080742178.

[26]

G. Tauchen and H. Zhou, Realized jumps on financial markets and predicting credit spreads, Journal of Econometrics, 160 (2011), 102-118. doi: 10.1016/j.jeconom.2010.03.023.

[27]

L. Wu, Jumps and dynamic asset allocation, Review of Quantitative Finance and Accounting, 20 (2003), 207-243.

show all references

References:
[1]

Y. Ait-SahaliaJ. Cacho-Diaz and R. J. Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, 117 (2015), 585-606.

[2]

G. BakshiC. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049. doi: 10.1111/j.1540-6261.1997.tb02749.x.

[3]

O. E. Barndorff-Nielsen and N. Shephard, Econometrics of testing for jumps in financial economics using bipower variation, Journal of Financial Econometrics, 4 (2006), 1-30.

[4]

D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, Review of Financial Studies, 9 (1996), 69-107. doi: 10.1093/rfs/9.1.69.

[5]

J. CaiX. Chen and M. Dai, Portfolio selection with capital gains tax, recursive utility, and regime switching, Management Science, 64 (2017), 2308-2324.

[6]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal consumption and investment with capital gains taxes, Review of Financial Studies, 14 (2001), 583-616.

[7]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal asset location and allocation with taxable and tax-deferred investing, Journal of Finance, 59 (2004), 999-1037.

[8]

M. DaiH. LiuC. Yang and Y. Zhong, Optimal tax timing with asymmetric long-term/short-term capital gains tax, Review of Financial Studies, 28 (2015), 2687-2721. doi: 10.1093/rfs/hhv024.

[9]

S. R. Das and R. Uppal, Systemic risk and international portfolio choice, Journal of Finance, 59 (2004), 2809-2834.

[10]

B. Eraker, Do stock prices and volatility jump? Reconciling evidence from spot and option prices, Journal of Finance, 59 (2004), 1367-1403. doi: 10.1111/j.1540-6261.2004.00666.x.

[11]

B. ErakerM. Johannes and N. Polson, The impact of jumps in volatility and returns, Journal of Finance, 58 (2003), 1269-1300. doi: 10.1111/1540-6261.00566.

[12]

M. F. GallmeyerR. Kaniel and S. Tompaidis, Tax management strategies with multiple risky assets, Journal of Financial Economics, 80 (2006), 243-291.

[13]

Y. Hong and X. Jin, Semi-analytical solutions for dynamic portfolio choice in jump-diffusion models and the optimal bond-stock mix, European Journal of Operational Research, 265 (2018), 389-398. doi: 10.1016/j.ejor.2017.08.010.

[14]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.

[15]

S. S. Lee and P. A. Mykland, Jumps in financial markets: A new nonparametric test and jump dynamics, Review of Financial Studies, 21 (2007), 2535-2563.

[16]

R. Levaggi and F. Menoncin, Optimal dynamic tax evasion: A portfolio approach, Journal of Economic Behavior and Organization, 124 (2016), 115-129.

[17]

J. LiuF. A. Longstaff and J. Pan, Dynamic asset allocation with event risk, Journal of Finance, 58 (2003), 231-259.

[18]

M. Marekwica, Optimal tax-timing and asset allocation when tax rebates on capital losses are limited, Journal of Banking and Finance, 36 (2012), 2048-2063.

[19]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144. doi: 10.1016/0304-405X(76)90022-2.

[20]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413. doi: 10.1016/0022-0531(71)90038-X.

[21]

H. Nagai, H-J-B equations of optimal consumption-investment and verification theorems, Applied Mathematics and Optimization, 71 (2015), 279-311. doi: 10.1007/s00245-014-9258-0.

[22]

J. Pan, The jump-risk premia implicit in options: Evidence from an integrated time-series study, Journal of Financial Economics, 63 (2002), 3-50. doi: 10.1016/S0304-405X(01)00088-5.

[23]

L. C. G. Rogers, Optimal Investment, Springer-Verlag, Berlin, 2013. doi: 10.1007/978-3-642-35202-7.

[24]

I. B. TaharH. M. Soner and N. Touzi, The dynamic programming equation for the problem of optimal investment under capital gains taxes, SIAM Journal on Control and Optimization, 46 (2007), 1779-1801. doi: 10.1137/050646044.

[25]

I. B. TaharH. M. Soner and N. Touzi, Merton problem with taxes: Characterization, computation, and approximation, SIAM Journal on Financial Mathematics, 1 (2010), 366-395. doi: 10.1137/080742178.

[26]

G. Tauchen and H. Zhou, Realized jumps on financial markets and predicting credit spreads, Journal of Econometrics, 160 (2011), 102-118. doi: 10.1016/j.jeconom.2010.03.023.

[27]

L. Wu, Jumps and dynamic asset allocation, Review of Quantitative Finance and Accounting, 20 (2003), 207-243.

Figure 1.  Dynamic optimal investment and consumption
Figure 2.  The effect of jump intensity of asset price on optimal investment and consumption
Figure 3.  The effect of jump mean of asset price on optimal investment and consumption
Figure 4.  The effect of tax policy on optimal investment and consumption ($\gamma>1$)
Table 1.  The values of the parameters in the base case
ParameterValueParameterValue
Current time$t=0$Terminal time$T=20$
Expected return$\mu=0.08$Volatility$\sigma=0.2$
Riskless interest rate$r=0.04$Risk aversion coefficient$\gamma=2.5$
Discount factor$\rho=0.04$Relative weight$\chi=1$
Audit intensity$\lambda_2=0.1$Punishment intensity$\alpha=0.08$
Tax rate on riskless asset$\tau_G=0.27$Tax rate on risky asset$\tau=0.235$
Jump intensity$\lambda_1=0.15$Log jump mean$\mu_J=0$
Jump volatility$\sigma_J=0.5$
ParameterValueParameterValue
Current time$t=0$Terminal time$T=20$
Expected return$\mu=0.08$Volatility$\sigma=0.2$
Riskless interest rate$r=0.04$Risk aversion coefficient$\gamma=2.5$
Discount factor$\rho=0.04$Relative weight$\chi=1$
Audit intensity$\lambda_2=0.1$Punishment intensity$\alpha=0.08$
Tax rate on riskless asset$\tau_G=0.27$Tax rate on risky asset$\tau=0.235$
Jump intensity$\lambda_1=0.15$Log jump mean$\mu_J=0$
Jump volatility$\sigma_J=0.5$
[1]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[2]

Jingzhen Liu, Ka-Fai Cedric Yiu, Kok Lay Teo. Optimal investment-consumption problem with constraint. Journal of Industrial & Management Optimization, 2013, 9 (4) : 743-768. doi: 10.3934/jimo.2013.9.743

[3]

Lei Sun, Lihong Zhang. Optimal consumption and investment under irrational beliefs. Journal of Industrial & Management Optimization, 2011, 7 (1) : 139-156. doi: 10.3934/jimo.2011.7.139

[4]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[5]

Min Dai, Zhou Yang. A note on finite horizon optimal investment and consumption with transaction costs. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1445-1454. doi: 10.3934/dcdsb.2016005

[6]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-24. doi: 10.3934/jimo.2018147

[7]

Lin Xu, Dingjun Yao, Gongpin Cheng. Optimal investment and dividend for an insurer under a Markov regime switching market with high gain tax. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-32. doi: 10.3934/jimo.2018154

[8]

Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361

[9]

Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control & Related Fields, 2018, 8 (0) : 1-18. doi: 10.3934/mcrf.2019003

[10]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[11]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[12]

Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial & Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875

[13]

Haiying Liu, Wenjie Bi, Kok Lay Teo, Naxing Liu. Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-20. doi: 10.3934/jimo.2018050

[14]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[15]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[16]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[17]

Qian Zhao, Rongming Wang, Jiaqin Wei. Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1557-1585. doi: 10.3934/jimo.2016.12.1557

[18]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[19]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

[20]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (19)
  • HTML views (186)
  • Cited by (0)

Other articles
by authors

[Back to Top]