• Previous Article
    Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints
  • JIMO Home
  • This Issue
  • Next Article
    A mean-reverting currency model with floating interest rates in uncertain environment
doi: 10.3934/jimo.2018120

A savings analysis of horizontal collaboration among VMI suppliers

Technologiepark 903, 9052 Zwijnaarde, Belgium

* Corresponding author

Received  June 2017 Revised  April 2018 Published  August 2018

Fund Project: This research was supported by the Agency for Innovation by Science and Technology in Flanders (IWT)

This paper considers a logistics distribution network with multiple suppliers that each replenish a set of retailers having constant demand rates. The underlying optimization problem is the Cyclic Inventory Routing Problem (CIRP), for which a heuristic solution method is developed. Further, horizontal collaboration through a third party Logistics Service Provider (LSP) is considered and the collaborative savings potential is analyzed. A design of experiments is performed to evaluate the impact of some relevant cost and network structure factors on the collaborative savings potential. The results from the design of experiments show that for some factor combinations there is in fact no significant savings potential.

Citation: Benedikt De Vos, Birger Raa, Stijn De Vuyst. A savings analysis of horizontal collaboration among VMI suppliers. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018120
References:
[1]

H. Andersson, Industrial aspects and literature survey: combined inventory management and routing, Computers & Operations Research, 37 (2010), 1515-1536. doi: 10.1016/j.cor.2009.11.009.

[2]

J.-F. Audy and S. D'Amours, Impact of benefit sharing among companies in the implantation of a collaborative transportation system - an application in the furniture industry, in Pervasive Collaborative Networks, s. I. : Springer US, (2008), 519-532. doi: 10.1007/978-0-387-84837-2_54.

[3]

J.-F. AudyS. D'Amours and L.-M. Rousseau, Cost allocation in the establishment of a collaborative transportation agreement - an application in the furniture industry, Journal of the Operational Research Society, 62 (2011), 960-970.

[4]

J.-F. AudyN. LehouxS. D'Amours and M. Rönnqvist, A framework for an efficient implementation of logistics collaborations, International Transactions in Operational Research, 19 (2012), 633-657. doi: 10.1111/j.1475-3995.2010.00799.x.

[5]

T.-H Chen and J.-M Chen, Optimizing supply chain collaboration based on joint replenishment and channel coordination, Transportation Research Part E: Logistics and Transportation Review, 41 (2005), 261-285. doi: 10.1016/j.tre.2004.06.003.

[6]

M. ChitsazA. Divsalar and P. Vansteenwegen, A two-phase algorithm for the cyclic inventory routing problem, European Journal of Operational Research, 254 (2016), 410-426. doi: 10.1016/j.ejor.2016.03.056.

[7]

G. Clarke and J. W. Wright, Scheduling of vehicles from a central depot to a number of delivery points, Operations Research, 12 (1964), 568-581.

[8]

L. C. CoelhoJ.-F. Cordeau and G. Laporte, Thirty years of inventory routing, Transportation Science, 48 (2013), 1-19. doi: 10.1287/trsc.2013.0472.

[9]

F. CruijssenM. Cools and W. Dullaert, Horizontal cooperation in logistics: Opportunities and impediments, Transportation Research Part E: Logistics and Transportation Review, 43 (2007), 129-142. doi: 10.1016/j.tre.2005.09.007.

[10]

F. CruijssenP. BormH. Fleuren and H. Hamers, Supplier-initiated outsourcing: a methodology to exploit synergy in transportation, European Journal of Operational Research, 207 (2010), 763-774. doi: 10.1016/j.ejor.2010.06.009.

[11]

Ö. ErgunG. Kuyzu and M. Savelsbergh, Reducing truckload transportation costs through collaboration, Transportation Science, 41 (2007), 206-221. doi: 10.1287/trsc.1060.0169.

[12]

M. FriskM. Göthe-LundgrenK. Jörnsten and M. Rönnqvist, Cost allocation in collaborative forest transportation, European Journal of Operational Research, 205 (2010), 448-458.

[13]

S. LozanoP. MorenoB. Adenso-Díaz and E. Algaba, Cooperative game theory approach to allocating benefits of horizontal cooperation, European Journal of Operational Research, 229 (2013), 444-452. doi: 10.1016/j.ejor.2013.02.034.

[14]

R. MasonC. Lalwani and R. Boughton, Combining vertical and horizontal collaboration for transport optimisation, Supply Chain Management: An International Journal, 12 (2007), 187-199. doi: 10.1108/13598540710742509.

[15]

J. T. MentzerW. DeWittJ. S. KeeblerS. MinN. W. NixC. D. Smith and Z. G. Zacharia, Defining supply chain management, Journal of Business Logistics, 22 (2001), 1-25. doi: 10.1002/j.2158-1592.2001.tb00001.x.

[16]

N. H. Moin and S. Salhi, Inventory routing problems: A logistical overview, Journal of the Operational Research Society, 58 (2007), 1185-1194. doi: 10.1057/palgrave.jors.2602264.

[17]

O. Ö. Özener and Ö. Ergun, Allocating costs in a collaborative transportation procurement network, Transportation Science, 42 (2008), 146-165.

[18]

D. Power, Supply chain management integration and implementation: A literature review, Supply Chain Management: An International Journal, 10 (2005), 252-263. doi: 10.1108/13598540510612721.

[19]

B. Raa and E.-H Aghezzaf, A practical solution approach for the cyclic inventory routing problem, European Journal of Operational Research, 192 (2009), 429-441. doi: 10.1016/j.ejor.2007.09.032.

[20]

B. Raa and W. Dullaert, Route and fleet design for cyclic inventory routing, European Journal of Operational Research, 256 (2017), 404-411. doi: 10.1016/j.ejor.2016.06.009.

[21]

T. Simatupang and R. Sridharan, The collaborative supply chain, The International Journal of Logistics Management, 13 (2002), 15-30. doi: 10.1108/09574090210806333.

[22]

G. Stefansson, Collaborative logistics management and the role of third-party service providers, International Journal of Physical Distribution & Logistics Management, 36 (2006), 76-92. doi: 10.1108/09600030610656413.

[23]

C. Vanovermeire and K. Sörensen, Integration of the cost allocation in the optimization of collaborative bundling, Transportation Research Part E: Logistics and Transportation Review, 72 (2014), 125-143. doi: 10.1016/j.tre.2014.09.009.

show all references

References:
[1]

H. Andersson, Industrial aspects and literature survey: combined inventory management and routing, Computers & Operations Research, 37 (2010), 1515-1536. doi: 10.1016/j.cor.2009.11.009.

[2]

J.-F. Audy and S. D'Amours, Impact of benefit sharing among companies in the implantation of a collaborative transportation system - an application in the furniture industry, in Pervasive Collaborative Networks, s. I. : Springer US, (2008), 519-532. doi: 10.1007/978-0-387-84837-2_54.

[3]

J.-F. AudyS. D'Amours and L.-M. Rousseau, Cost allocation in the establishment of a collaborative transportation agreement - an application in the furniture industry, Journal of the Operational Research Society, 62 (2011), 960-970.

[4]

J.-F. AudyN. LehouxS. D'Amours and M. Rönnqvist, A framework for an efficient implementation of logistics collaborations, International Transactions in Operational Research, 19 (2012), 633-657. doi: 10.1111/j.1475-3995.2010.00799.x.

[5]

T.-H Chen and J.-M Chen, Optimizing supply chain collaboration based on joint replenishment and channel coordination, Transportation Research Part E: Logistics and Transportation Review, 41 (2005), 261-285. doi: 10.1016/j.tre.2004.06.003.

[6]

M. ChitsazA. Divsalar and P. Vansteenwegen, A two-phase algorithm for the cyclic inventory routing problem, European Journal of Operational Research, 254 (2016), 410-426. doi: 10.1016/j.ejor.2016.03.056.

[7]

G. Clarke and J. W. Wright, Scheduling of vehicles from a central depot to a number of delivery points, Operations Research, 12 (1964), 568-581.

[8]

L. C. CoelhoJ.-F. Cordeau and G. Laporte, Thirty years of inventory routing, Transportation Science, 48 (2013), 1-19. doi: 10.1287/trsc.2013.0472.

[9]

F. CruijssenM. Cools and W. Dullaert, Horizontal cooperation in logistics: Opportunities and impediments, Transportation Research Part E: Logistics and Transportation Review, 43 (2007), 129-142. doi: 10.1016/j.tre.2005.09.007.

[10]

F. CruijssenP. BormH. Fleuren and H. Hamers, Supplier-initiated outsourcing: a methodology to exploit synergy in transportation, European Journal of Operational Research, 207 (2010), 763-774. doi: 10.1016/j.ejor.2010.06.009.

[11]

Ö. ErgunG. Kuyzu and M. Savelsbergh, Reducing truckload transportation costs through collaboration, Transportation Science, 41 (2007), 206-221. doi: 10.1287/trsc.1060.0169.

[12]

M. FriskM. Göthe-LundgrenK. Jörnsten and M. Rönnqvist, Cost allocation in collaborative forest transportation, European Journal of Operational Research, 205 (2010), 448-458.

[13]

S. LozanoP. MorenoB. Adenso-Díaz and E. Algaba, Cooperative game theory approach to allocating benefits of horizontal cooperation, European Journal of Operational Research, 229 (2013), 444-452. doi: 10.1016/j.ejor.2013.02.034.

[14]

R. MasonC. Lalwani and R. Boughton, Combining vertical and horizontal collaboration for transport optimisation, Supply Chain Management: An International Journal, 12 (2007), 187-199. doi: 10.1108/13598540710742509.

[15]

J. T. MentzerW. DeWittJ. S. KeeblerS. MinN. W. NixC. D. Smith and Z. G. Zacharia, Defining supply chain management, Journal of Business Logistics, 22 (2001), 1-25. doi: 10.1002/j.2158-1592.2001.tb00001.x.

[16]

N. H. Moin and S. Salhi, Inventory routing problems: A logistical overview, Journal of the Operational Research Society, 58 (2007), 1185-1194. doi: 10.1057/palgrave.jors.2602264.

[17]

O. Ö. Özener and Ö. Ergun, Allocating costs in a collaborative transportation procurement network, Transportation Science, 42 (2008), 146-165.

[18]

D. Power, Supply chain management integration and implementation: A literature review, Supply Chain Management: An International Journal, 10 (2005), 252-263. doi: 10.1108/13598540510612721.

[19]

B. Raa and E.-H Aghezzaf, A practical solution approach for the cyclic inventory routing problem, European Journal of Operational Research, 192 (2009), 429-441. doi: 10.1016/j.ejor.2007.09.032.

[20]

B. Raa and W. Dullaert, Route and fleet design for cyclic inventory routing, European Journal of Operational Research, 256 (2017), 404-411. doi: 10.1016/j.ejor.2016.06.009.

[21]

T. Simatupang and R. Sridharan, The collaborative supply chain, The International Journal of Logistics Management, 13 (2002), 15-30. doi: 10.1108/09574090210806333.

[22]

G. Stefansson, Collaborative logistics management and the role of third-party service providers, International Journal of Physical Distribution & Logistics Management, 36 (2006), 76-92. doi: 10.1108/09600030610656413.

[23]

C. Vanovermeire and K. Sörensen, Integration of the cost allocation in the optimization of collaborative bundling, Transportation Research Part E: Logistics and Transportation Review, 72 (2014), 125-143. doi: 10.1016/j.tre.2014.09.009.

Figure 1.  Location of LSP, suppliers and retailers in the illustrative example
Figure 2.  Illustration of the factor $overlap$
Figure 3.  Boxplots of percentage savings for different levels of $overlap$
Figure 4.  Boxplots of percentage savings for different levels of $costlsp$
Figure 5.  Boxplots of percentage savings for different levels of $nrs$
Figure 6.  Interaction between the factors $overlap$ and $costlsp$
Figure 7.  Interaction between the factors $overlap$ and $nr$
Figure 8.  Interaction between the factors $costlsp$ and $nr$
Table 1.  Input data for the illustrative example
LSP & SuppliersRetailers
$\tau$1.2/km $\eta_j$0.8/unit/day
$\varphi_0$20/tour $\varphi_j$10/visit
$\kappa$100 units $\kappa_j$100 units
LSP & SuppliersRetailers
$\tau$1.2/km $\eta_j$0.8/unit/day
$\varphi_0$20/tour $\varphi_j$10/visit
$\kappa$100 units $\kappa_j$100 units
Table 2.  Routes for supplier 1 individually
$r$route $T_r$ $TC_r$
1 $S_1 - 6 - 5 - 1 - 2 - S_1$6152.41
2 $S_1 - 3 - 8 - S_1$572.62
3 $S_1 - 7 - 9 - 10 - 4 - S_1$7182.47
$r$route $T_r$ $TC_r$
1 $S_1 - 6 - 5 - 1 - 2 - S_1$6152.41
2 $S_1 - 3 - 8 - S_1$572.62
3 $S_1 - 7 - 9 - 10 - 4 - S_1$7182.47
Table 3.  Routes for the LSP in the grand coalition {1, 2, 3}
$r$route $T_r$ $TC_r$
1 $LSP - 15 - 9 - 17 - 22 - 10 - 13 - 4 - LSP$4222.95
2 $LSP - 25 - 6 - 23 - 20 - 24 - LSP$3203.8
3 $LSP - 7 - 21 - 27 - LSP$6146.21
4 $LSP - 2 - 5 - 1 - 16 - 18 - 30 - LSP$5185.00
5 $LSP - 8 - 26 - 19 - 3 - 14 - 11 - LSP$3142.36
6 $LSP - 28 - 29 - 12 - LSP$5128.54
$r$route $T_r$ $TC_r$
1 $LSP - 15 - 9 - 17 - 22 - 10 - 13 - 4 - LSP$4222.95
2 $LSP - 25 - 6 - 23 - 20 - 24 - LSP$3203.8
3 $LSP - 7 - 21 - 27 - LSP$6146.21
4 $LSP - 2 - 5 - 1 - 16 - 18 - 30 - LSP$5185.00
5 $LSP - 8 - 26 - 19 - 3 - 14 - 11 - LSP$3142.36
6 $LSP - 28 - 29 - 12 - LSP$5128.54
Table 4.  Costs and savings individual suppliers and coalitions
CoalitionCumulative individual costCoalition costSaving%Saving
1407.50---
2310.22---
3417.75---
{1}407.50410.20-2.70-0.66
{2}310.22310.010.210.07
{3}417.75428.84-11.09-2.65
{1, 2}717.72659.9657.768.05
{1, 3}825.25780.9644.295.3
{2, 3}727.97697.8630.114.14
{1, 2, 3}1135.471028.87106.69.39
CoalitionCumulative individual costCoalition costSaving%Saving
1407.50---
2310.22---
3417.75---
{1}407.50410.20-2.70-0.66
{2}310.22310.010.210.07
{3}417.75428.84-11.09-2.65
{1, 2}717.72659.9657.768.05
{1, 3}825.25780.9644.295.3
{2, 3}727.97697.8630.114.14
{1, 2, 3}1135.471028.87106.69.39
Table 5.  Cost rates (in € per day) for the individual supplier instances
SuppliernrRetTotalDistributionHolding
S0 $32$ $620.7$ $447.7$ $173.0$
S1 $52$ $846.4$ $581.4$ $265.0$
S2 $44$ $751.4$ $516.3$ $235.1$
S3 $53$ $973.2$ $708.4$ $264.8$
S4 $46$ $779.8$ $552.7$ $227.0$
S5 $68$ $1255.6$ $904.3$ $351.4$
S6 $63$ $998.2$ $692.7$ $305.5$
S7 $31$ $521.5$ $368.3$ $153.2$
S8 $51$ $840.4$ $598.2$ $242.2$
S9 $56$ $1058.9$ $758.7$ $300.2$
L0 $84$ $1491.4$ $1061.3$ $430.1$
L1 $111$ $1886.6$ $1336.4$ $550.2$
L2 $118$ $1900.0$ $1279.1$ $620.9$
L3 $82$ $1257.8$ $843.9$ $413.8$
L4 $94$ $1662.8$ $1167.9$ $494.9$
L5 $120$ $1831.3$ $1249.8$ $581.5$
L6 $99$ $1639.2$ $1148.8$ $490.5$
L7 $109$ $1838.5$ $1296.7$ $541.8$
L8 $86$ $1546.4$ $1125.9$ $420.5$
L9 $87$ $1405.8$ $945.3$ $460.5$
Avg. $74.3$ $1255.3$ $879.2$ $376.1$
SuppliernrRetTotalDistributionHolding
S0 $32$ $620.7$ $447.7$ $173.0$
S1 $52$ $846.4$ $581.4$ $265.0$
S2 $44$ $751.4$ $516.3$ $235.1$
S3 $53$ $973.2$ $708.4$ $264.8$
S4 $46$ $779.8$ $552.7$ $227.0$
S5 $68$ $1255.6$ $904.3$ $351.4$
S6 $63$ $998.2$ $692.7$ $305.5$
S7 $31$ $521.5$ $368.3$ $153.2$
S8 $51$ $840.4$ $598.2$ $242.2$
S9 $56$ $1058.9$ $758.7$ $300.2$
L0 $84$ $1491.4$ $1061.3$ $430.1$
L1 $111$ $1886.6$ $1336.4$ $550.2$
L2 $118$ $1900.0$ $1279.1$ $620.9$
L3 $82$ $1257.8$ $843.9$ $413.8$
L4 $94$ $1662.8$ $1167.9$ $494.9$
L5 $120$ $1831.3$ $1249.8$ $581.5$
L6 $99$ $1639.2$ $1148.8$ $490.5$
L7 $109$ $1838.5$ $1296.7$ $541.8$
L8 $86$ $1546.4$ $1125.9$ $420.5$
L9 $87$ $1405.8$ $945.3$ $460.5$
Avg. $74.3$ $1255.3$ $879.2$ $376.1$
Table 6.  Impact of $costLSP$ for the individual suppliers
$costLSP$TotalRelativeDistributionRelativeHoldingRelative
$90\%$ $1166.6$ $0.93$ $800.2$ $0.91$ $366.4$ $0.97$
$95\%$ $1211.2$ $0.96$ $839.3$ $0.95$ $371.9$ $0.99$
$100\%$ $1255.3$ $1$ $879.2$ $1$ $376.1$ $1$
$105\%$ $1300.0$ $1.04$ $913.1$ $1.04$ $386.9$ $1.03$
$costLSP$TotalRelativeDistributionRelativeHoldingRelative
$90\%$ $1166.6$ $0.93$ $800.2$ $0.91$ $366.4$ $0.97$
$95\%$ $1211.2$ $0.96$ $839.3$ $0.95$ $371.9$ $0.99$
$100\%$ $1255.3$ $1$ $879.2$ $1$ $376.1$ $1$
$105\%$ $1300.0$ $1.04$ $913.1$ $1.04$ $386.9$ $1.03$
Table 7.  Impact of $overlap$ for the individual suppliers
$overlap$TotalRelativeDistributionRelativeHoldingRelative
1 $1255.3$ $1$ $879.2$ $1$ $376.1$ $1$
0 $1424.7$ $1.13$ $1041.3$ $1.18$ $383.5$ $1.02$
$overlap$TotalRelativeDistributionRelativeHoldingRelative
1 $1255.3$ $1$ $879.2$ $1$ $376.1$ $1$
0 $1424.7$ $1.13$ $1041.3$ $1.18$ $383.5$ $1.02$
Table 8.  Illustration of the effect of $nr$
$nr$CoalitionTotalCumulativeSaving $\%$sav
1S3973.2973.200.00
2S3-L82409.62519.6110.14.37
3S3-L8-S23004.43271.0266.68.15
4S3-L8-S2-L64501.44910.2408.98.33
5S3-L8-S2-L6-L35620.96168.0547.18.87
6S3-L8-S2-L6-L3-L17248.38054.6806.410.01
7S3-L8-S2-L6-L3-L1-S58354.29310.2956.010.27
8S3-L8-S2-L6-L3-L1-S5-L49790.910973.11182.210.77
$nr$CoalitionTotalCumulativeSaving $\%$sav
1S3973.2973.200.00
2S3-L82409.62519.6110.14.37
3S3-L8-S23004.43271.0266.68.15
4S3-L8-S2-L64501.44910.2408.98.33
5S3-L8-S2-L6-L35620.96168.0547.18.87
6S3-L8-S2-L6-L3-L17248.38054.6806.410.01
7S3-L8-S2-L6-L3-L1-S58354.29310.2956.010.27
8S3-L8-S2-L6-L3-L1-S5-L49790.910973.11182.210.77
Table 9.  Results of the ANOVA with main effects and two-way interactions
SourceType Ⅲ Sum of SquaresdfMean SquareFSig.
Corrected Model121661.580a215793.109918.9960.000
Intercept570.0291570.02990.4220.000
$overlap$91248.526191248.52614474.5610.000
$costLSP$20639.71136879.9041091.3450.000
$nr$8779.36371254.195198.9500.000
$overlap * costLSP$306.0543102.01816.1830.000
$overlap * nr$687.925798.27515.5890.000
Error7930.51012586.304
Total130162.1181280
Corrected Total129592.0891279
a R Squared = 0.939 (Adjusted R Squared = 0.938).
SourceType Ⅲ Sum of SquaresdfMean SquareFSig.
Corrected Model121661.580a215793.109918.9960.000
Intercept570.0291570.02990.4220.000
$overlap$91248.526191248.52614474.5610.000
$costLSP$20639.71136879.9041091.3450.000
$nr$8779.36371254.195198.9500.000
$overlap * costLSP$306.0543102.01816.1830.000
$overlap * nr$687.925798.27515.5890.000
Error7930.51012586.304
Total130162.1181280
Corrected Total129592.0891279
a R Squared = 0.939 (Adjusted R Squared = 0.938).
Table 10.  Average percentage savings for the different $overlap$ levels
$overlap$01
Estimate $-7.8\%$ $9.1\%$
$overlap$01
Estimate $-7.8\%$ $9.1\%$
Table 11.  Average percentage savings for the different $costlsp$ levels
$costLSP$ $90\%$ $95\%$ $100\%$ $105\%$
Estimate $6.1\%$ $2.3\%$ $-1.0\%$ $-4.8\%$
$costLSP$ $90\%$ $95\%$ $100\%$ $105\%$
Estimate $6.1\%$ $2.3\%$ $-1.0\%$ $-4.8\%$
Table 12.  Average percentage savings for the different $nr$ levels
$nr$12345678
Estimate-4.8%-1.8%-0.1%1.0%1.9%2.5%3.0%3.5%
$nr$12345678
Estimate-4.8%-1.8%-0.1%1.0%1.9%2.5%3.0%3.5%
Table 13.  Post-hoc Tukey test for $nr$
pctSava, b, c
Subset
$nr$N1234567
1160-4.7630
2160-1.7617
3160-0.1306
41601.0208
51601.87151.8715
61602.54442.5444
71603.04493.0449
81603.5125
Sig.1.0001.0001.0000.0510.2440.6320.710
a Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(error) = 6.304
b Uses Harmonic Mean Sample Size = 160.000
c Alpha = 0.05
pctSava, b, c
Subset
$nr$N1234567
1160-4.7630
2160-1.7617
3160-0.1306
41601.0208
51601.87151.8715
61602.54442.5444
71603.04493.0449
81603.5125
Sig.1.0001.0001.0000.0510.2440.6320.710
a Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(error) = 6.304
b Uses Harmonic Mean Sample Size = 160.000
c Alpha = 0.05
[1]

Nurhadi Siswanto, Stefanus Eko Wiratno, Ahmad Rusdiansyah, Ruhul Sarker. Maritime inventory routing problem with multiple time windows. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-27. doi: 10.3934/jimo.2018091

[2]

Xiaohui Lyu, Nengmin Wang, Zhen Yang, Haoxun Chen. Shipper collaboration in forward and reverse logistics. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-37. doi: 10.3934/jimo.2018173

[3]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079

[4]

Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial & Management Optimization, 2012, 8 (1) : 19-40. doi: 10.3934/jimo.2012.8.19

[5]

Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027

[6]

Mingyong Lai, Hongming Yang, Songping Yang, Junhua Zhao, Yan Xu. Cyber-physical logistics system-based vehicle routing optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 701-715. doi: 10.3934/jimo.2014.10.701

[7]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[8]

Honglei Xu, Peng Sui, Guanglu Zhou, Louis Caccetta. Dampening bullwhip effect of order-up-to inventory strategies via an optimal control method. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 655-664. doi: 10.3934/naco.2013.3.655

[9]

Cheng-Kang Chen, Yi-Xiang Liao. A deteriorating inventory model for an intermediary firm under return on inventory investment maximization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 989-1000. doi: 10.3934/jimo.2014.10.989

[10]

Michelle L.F. Cheong, Rohit Bhatnagar, Stephen C. Graves. Logistics network design with supplier consolidation hubs and multiple shipment options. Journal of Industrial & Management Optimization, 2007, 3 (1) : 51-69. doi: 10.3934/jimo.2007.3.51

[11]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[12]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[13]

Zvi Drezner, Carlton Scott. Approximate and exact formulas for the $(Q,r)$ inventory model. Journal of Industrial & Management Optimization, 2015, 11 (1) : 135-144. doi: 10.3934/jimo.2015.11.135

[14]

Qing Yang, Shiji Song, Cheng Wu. Inventory policies for a partially observed supply capacity model. Journal of Industrial & Management Optimization, 2013, 9 (1) : 13-30. doi: 10.3934/jimo.2013.9.13

[15]

Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379

[16]

Alexander O. Brown, Christopher S. Tang. The impact of alternative performance measures on single-period inventory policy. Journal of Industrial & Management Optimization, 2006, 2 (3) : 297-318. doi: 10.3934/jimo.2006.2.297

[17]

Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009

[18]

Xin Zhou, Liangping Shi, Bingzhi Huang. Integrated inventory model with stochastic lead time and controllable variability for milk runs. Journal of Industrial & Management Optimization, 2012, 8 (3) : 657-672. doi: 10.3934/jimo.2012.8.657

[19]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[20]

Ata Allah Taleizadeh, Hadi Samimi, Biswajit Sarkar, Babak Mohammadi. Stochastic machine breakdown and discrete delivery in an imperfect inventory-production system. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1511-1535. doi: 10.3934/jimo.2017005

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]