• Previous Article
    Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step
  • JIMO Home
  • This Issue
  • Next Article
    Unified optimality conditions for set-valued optimizations
doi: 10.3934/jimo.2018102

Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption

1. 

School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, China

2. 

School of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan, China

3. 

School of Fundamental Education, Sichuan Normal University, Chengdu 610066, Sichuan, China

* Corresponding author: Shaojun Lan

Received  October 2017 Revised  March 2018 Published  July 2018

This paper is concerned with a discrete-time $ Geo/G/1$ retrial queueing system with non-preemptive priority, working vacations and vacation interruption where the service times and retrial times are arbitrarily distributed. If an arriving customer finds the server free, his service commences immediately. Otherwise, he either joins the priority queue with probability $ α$, or leaves the service area and enters the retrial group (orbit) with probability $ \mathit{\bar{\alpha }}\left( = 1-\alpha \right)$. Customers in the priority queue have non-preemptive priority over those in the orbit. Whenever the system becomes empty, the server takes working vacation during which the server can serve customers at a lower service rate. If there are customers in the system at the epoch of a service completion, the server resumes the normal working level whether the working vacation ends or not (i.e., working vacation interruption occurs). Otherwise, the server proceeds with the vacation. Employing supplementary variable method and generating function technique, we analyze the underlying Markov chain of the considered queueing model, and obtain the stationary distribution of the Markov chain, the generating functions for the number of customers in the priority queue, in the orbit and in the system, as well as some crucial performance measures in steady state. Furthermore, the relation between our discrete-time queue and its continuous-time counterpart is investigated. Finally, some numerical examples are provided to explore the effect of various system parameters on the queueing characteristics.

Citation: Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018102
References:
[1]

A. K. Aboul-HassanS. I. Rabia and F. A. Taboly, Performance evaluation of a discrete-time $ Geo^{[X]}/G/1$ retrial queue with general retrial times, Computers & Mathematics with Applications, 58 (2009), 548-557. doi: 10.1016/j.camwa.2009.03.101.

[2]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211. doi: 10.1007/BF02564721.

[3]

J. R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009, Mathematical and Computer Modelling, 51 (2010), 1071-1081. doi: 10.1016/j.mcm.2009.12.011.

[4]

J. R. Artalejo and A. Gómez-Corral, Retrial Queueing Systems: A Computational Approach, Springer, Berlin, 2008. doi: 10.1007/978-3-540-78725-9.

[5]

I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with general retrial times, Queueing Systems, 48 (2004), 5-21. doi: 10.1023/B:QUES.0000039885.12490.02.

[6]

I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with the server subject to starting failures, Annals of Operations Research, 141 (2006), 85-107. doi: 10.1007/s10479-006-5295-7.

[7]

I. Atencia and P. Moreno, A single-server retrial queue with general retrial times and Bernoulli schedule, Applied Mathematics and Computation, 162 (2005), 855-880. doi: 10.1016/j.amc.2003.12.128.

[8]

H. Bruneel and B. G. Kim, Discrete-Time Models for Communication Systems Including ATM, Kluwer Academic Publishers, Boston, 1993. doi: 10.1007/978-1-4615-3130-2.

[9]

B. D. Choi and J. W. Kim, Discrete-time $ Geo_1, Geo_2/G/1$ retrial queueing systems with two types of calls, Computers & Mathematics with Applications, 33 (1997), 79-88. doi: 10.1016/S0898-1221(97)00078-3.

[10]

I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations, Applied Mathematical Modelling, 37 (2013), 1295-1309. doi: 10.1016/j.apm.2012.04.011.

[11]

I. Dimitriou, A two class retrial system with coupled orbit queues, Probability in the Engineering and Informational Sciences, 31 (2017), 139-179. doi: 10.1017/S0269964816000528.

[12]

I. Dimitriou, A queueing model with two types of retrial customers and paired services, Annals of Operations Research, 238 (2016), 123-143. doi: 10.1007/s10479-015-2059-2.

[13]

I. Dimitriou, Analysis of a priority retrial queue with dependent vacation scheme and application to energy saving in wireless communication systems, The Computer Journal, 56 (2013), 1363-1380.

[14]

T. V. Do, $ M/M/1$ retrial queue with working vacations, Acta Informatica, 47 (2010), 67-75. doi: 10.1007/s00236-009-0110-y.

[15]

B. T. Doshi, Queueing systems with vacation-a survey, Queueing Systems, 1 (1986), 29-66. doi: 10.1007/BF01149327.

[16]

A. DudinC. S. KimS. Dudin and O. Dudina, Priority retrial queueing model operating in random environment with varying number and reservation of servers, Applied Mathematics and Computation, 269 (2015), 674-690. doi: 10.1016/j.amc.2015.08.005.

[17]

G. I. Falin, A survey of retrial queues, Queueing Systems, 7 (1990), 127-167. doi: 10.1007/BF01158472.

[18]

G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman & Hall, London, 1997.

[19]

A. GandhiV. GuptaM. Harchol-Balter and M. A. Kozuch, Optimality analysis of energy-performance trade-off for server farm management, Performance Evaluation, 67 (2010), 1155-1171.

[20]

S. Gao and J. Wang, On a discrete-time $ GI^X/Geo/1/N-G$ queue with randomized working vacations and at most J vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806. doi: 10.3934/jimo.2015.11.779.

[21]

S. Gao and J. Wang, Discrete-time $ Geo^X/G/1$ retrial queue with general retrial times, working vacations and vacation interruption, Quality Technology & Quantitative Management, 10 (2013), 495-512.

[22]

J. J. Hunter, Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models: Techniques and Applications, Academic Press, New York, 1983.

[23]

M. JainG. C. Sharma and R. Sharma, Maximum entropy approach for discrete-time unreliable server $ Geo^X/Geo/1$ queue with working vacation, International Journal of Mathematics in Operational Research, 4 (2012), 56-77. doi: 10.1504/IJMOR.2012.044473.

[24]

M. JainA. Bhagat and C. Shekhar, Double orbit finite retrial queues with priority customers and service interruptions, Applied Mathematics and Computation, 253 (2015), 324-344. doi: 10.1016/j.amc.2014.12.066.

[25]

J. C. KeC. H. Wu and Z. G. Zhang, Recent developments in vacation queueing models: a short survey, International Journal of Operations Research, 7 (2010), 3-8.

[26]

P. V. Laxmi and K. Jyothsna, Finite buffer $ GI/Geo/1$ batch servicing queue with multiple working vacations, RAIRO-Operations Research, 48 (2014), 521-543. doi: 10.1051/ro/2014022.

[27]

H. Li and T. Yang, $ Geo/G/1$ discrete time retrial queue with Bernoulli schedule, European Journal of Operational Research, 111 (1998), 629-649. doi: 10.1016/S0377-2217(97)90357-X.

[28]

J. LiN. Tian and W. Liu, The discrete-time $ GI/Geo/1$ queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63. doi: 10.1007/s11134-007-9030-0.

[29]

J. Li, Analysis of the discrete-time $Geo/G/1$ working vacation queue and its application to network scheduling, Computers & Industrial Engineering, 65 (2013), 594-604. doi: 10.1016/j.cie.2013.04.009.

[30]

T. LiZ. Wang and Z. Liu, $Geo/Geo/1$ retrial queue with working vacations and vacation interruption, Journal of Applied Mathematics and Computing, 39 (2012), 131-143. doi: 10.1007/s12190-011-0516-x.

[31]

T. LiZ. Liu and Z. Wang, $M/M/1$ retrial queue with collisions and working vacation interruption under N-policy, RAIRO-Operations Research, 46 (2012), 355-371. doi: 10.1051/ro/2012022.

[32]

Z. Liu and S. Gao, Discrete-time $Geo_1, Geo^X_2/G_1, G_2/1$ retrial queue with two classes of customers and feedback, Mathematical and Computer Modelling, 53 (2011), 1208-1220. doi: 10.1016/j.mcm.2010.11.090.

[33]

T. Phung-Duc, Retrial queueing models: A survey on theory and applications, in Stochastic Operations Research in Business and Industry (eds. T. Dohi, K. Ano and S. Kasahara), World Scientific Publisher, (2017), 1–26.

[34]

T. Phung-Duc, Single server retrial queues with setup time, Journal of Industrial and Management Optimization, 13 (2017), 1329-1345. doi: 10.3934/jimo.2016075.

[35]

T. Phung-Duc, Exact solutions for $M/M/c/$ Setup queues, Telecommunication Systems, 64 (2017), 309-324. doi: 10.1007/s11235-016-0177-z.

[36]

T. Phung-DucW. Rogiest and S. Wittevrongel, Single server retrial queues with speed scaling: Analysis and performance evaluation, Journal of Industrial and Management Optimization, 13 (2017), 1927-1943. doi: 10.3934/jimo.2017025.

[37]

T. Phung-Duc and K. Kawanishi, Impacts of retrials on power-saving policy in data centers, Proceedings of the 11th International Conference on Queueing Theory and Network Applications, 22 (2016), 1-4. doi: 10.1145/3016032.3016047.

[38]

L. R. Ronald, Optimization in Operations Research, Prentice Hall, New Jersey, 1997.

[39]

L. D. Servi and S. G. Finn, $ M/M/1$ queue with working vacations ($ M/M/1/WV$), Performance Evaluation, 50 (2002), 41-52. doi: 10.1016/S0166-5316(02)00057-3.

[40]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, North-Holland Publishing Co., Amsterdam, 1993.

[41]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.

[42]

S. Upadhyaya, Working vacation policy for a discrete-time $Geo^X/Geo/1$ retrial queue, OPSEARCH, 52 (2015), 650-669. doi: 10.1007/s12597-015-0200-2.

[43]

J. Walraevens, D. Claeys and T. Phung-Duc, Asymptotics of queue length distributions in priority retrial queues, preprint, arXiv: 1801.06993.

[44]

J. Wang and Q. Zhao, A discrete-time $Geo/G/1$ retrial queue with starting failures and second optional service, Computers & Mathematics with Applications, 53 (2007), 115-127. doi: 10.1016/j.camwa.2006.10.024.

[45]

M. E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues, IEEE Computer Society Press, Los Alamitos, California, 1994.

[46]

J. WuZ. Liu and Y. Peng, A discrete-time $Geo/G/1$ retrial queue with preemptive resume and collisions, Applied Mathematical Modelling, 35 (2011), 837-847. doi: 10.1016/j.apm.2010.07.039.

[47]

D. A. Wu and H. Takagi, $M/G/1$ queue with multiple working vacations, Performance Evaluation, 63 (2006), 654-681.

[48]

T. Yang and J. G. C. Templeton, A survey on retrial queues, Queueing Systems, 2 (1987), 201-233. doi: 10.1007/BF01158899.

[49]

T. Yang and H. Li, On the steady-state queue size distribution of the discrete-time $Geo/G/1$ queue with repeated customers, Queueing Systems, 21 (1995), 199-215. doi: 10.1007/BF01158581.

[50]

M. YuY. TangY. Fu and L. Pan, $ GI/Geom/1/N/MWV$ queue with changeover time and searching for the optimum service rate in working vacation period, Journal of Computational and Applied Mathematics, 235 (2011), 2170-2184. doi: 10.1016/j.cam.2010.10.013.

show all references

References:
[1]

A. K. Aboul-HassanS. I. Rabia and F. A. Taboly, Performance evaluation of a discrete-time $ Geo^{[X]}/G/1$ retrial queue with general retrial times, Computers & Mathematics with Applications, 58 (2009), 548-557. doi: 10.1016/j.camwa.2009.03.101.

[2]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211. doi: 10.1007/BF02564721.

[3]

J. R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009, Mathematical and Computer Modelling, 51 (2010), 1071-1081. doi: 10.1016/j.mcm.2009.12.011.

[4]

J. R. Artalejo and A. Gómez-Corral, Retrial Queueing Systems: A Computational Approach, Springer, Berlin, 2008. doi: 10.1007/978-3-540-78725-9.

[5]

I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with general retrial times, Queueing Systems, 48 (2004), 5-21. doi: 10.1023/B:QUES.0000039885.12490.02.

[6]

I. Atencia and P. Moreno, A discrete-time $ Geo/G/1$ retrial queue with the server subject to starting failures, Annals of Operations Research, 141 (2006), 85-107. doi: 10.1007/s10479-006-5295-7.

[7]

I. Atencia and P. Moreno, A single-server retrial queue with general retrial times and Bernoulli schedule, Applied Mathematics and Computation, 162 (2005), 855-880. doi: 10.1016/j.amc.2003.12.128.

[8]

H. Bruneel and B. G. Kim, Discrete-Time Models for Communication Systems Including ATM, Kluwer Academic Publishers, Boston, 1993. doi: 10.1007/978-1-4615-3130-2.

[9]

B. D. Choi and J. W. Kim, Discrete-time $ Geo_1, Geo_2/G/1$ retrial queueing systems with two types of calls, Computers & Mathematics with Applications, 33 (1997), 79-88. doi: 10.1016/S0898-1221(97)00078-3.

[10]

I. Dimitriou, A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations, Applied Mathematical Modelling, 37 (2013), 1295-1309. doi: 10.1016/j.apm.2012.04.011.

[11]

I. Dimitriou, A two class retrial system with coupled orbit queues, Probability in the Engineering and Informational Sciences, 31 (2017), 139-179. doi: 10.1017/S0269964816000528.

[12]

I. Dimitriou, A queueing model with two types of retrial customers and paired services, Annals of Operations Research, 238 (2016), 123-143. doi: 10.1007/s10479-015-2059-2.

[13]

I. Dimitriou, Analysis of a priority retrial queue with dependent vacation scheme and application to energy saving in wireless communication systems, The Computer Journal, 56 (2013), 1363-1380.

[14]

T. V. Do, $ M/M/1$ retrial queue with working vacations, Acta Informatica, 47 (2010), 67-75. doi: 10.1007/s00236-009-0110-y.

[15]

B. T. Doshi, Queueing systems with vacation-a survey, Queueing Systems, 1 (1986), 29-66. doi: 10.1007/BF01149327.

[16]

A. DudinC. S. KimS. Dudin and O. Dudina, Priority retrial queueing model operating in random environment with varying number and reservation of servers, Applied Mathematics and Computation, 269 (2015), 674-690. doi: 10.1016/j.amc.2015.08.005.

[17]

G. I. Falin, A survey of retrial queues, Queueing Systems, 7 (1990), 127-167. doi: 10.1007/BF01158472.

[18]

G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman & Hall, London, 1997.

[19]

A. GandhiV. GuptaM. Harchol-Balter and M. A. Kozuch, Optimality analysis of energy-performance trade-off for server farm management, Performance Evaluation, 67 (2010), 1155-1171.

[20]

S. Gao and J. Wang, On a discrete-time $ GI^X/Geo/1/N-G$ queue with randomized working vacations and at most J vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806. doi: 10.3934/jimo.2015.11.779.

[21]

S. Gao and J. Wang, Discrete-time $ Geo^X/G/1$ retrial queue with general retrial times, working vacations and vacation interruption, Quality Technology & Quantitative Management, 10 (2013), 495-512.

[22]

J. J. Hunter, Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models: Techniques and Applications, Academic Press, New York, 1983.

[23]

M. JainG. C. Sharma and R. Sharma, Maximum entropy approach for discrete-time unreliable server $ Geo^X/Geo/1$ queue with working vacation, International Journal of Mathematics in Operational Research, 4 (2012), 56-77. doi: 10.1504/IJMOR.2012.044473.

[24]

M. JainA. Bhagat and C. Shekhar, Double orbit finite retrial queues with priority customers and service interruptions, Applied Mathematics and Computation, 253 (2015), 324-344. doi: 10.1016/j.amc.2014.12.066.

[25]

J. C. KeC. H. Wu and Z. G. Zhang, Recent developments in vacation queueing models: a short survey, International Journal of Operations Research, 7 (2010), 3-8.

[26]

P. V. Laxmi and K. Jyothsna, Finite buffer $ GI/Geo/1$ batch servicing queue with multiple working vacations, RAIRO-Operations Research, 48 (2014), 521-543. doi: 10.1051/ro/2014022.

[27]

H. Li and T. Yang, $ Geo/G/1$ discrete time retrial queue with Bernoulli schedule, European Journal of Operational Research, 111 (1998), 629-649. doi: 10.1016/S0377-2217(97)90357-X.

[28]

J. LiN. Tian and W. Liu, The discrete-time $ GI/Geo/1$ queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63. doi: 10.1007/s11134-007-9030-0.

[29]

J. Li, Analysis of the discrete-time $Geo/G/1$ working vacation queue and its application to network scheduling, Computers & Industrial Engineering, 65 (2013), 594-604. doi: 10.1016/j.cie.2013.04.009.

[30]

T. LiZ. Wang and Z. Liu, $Geo/Geo/1$ retrial queue with working vacations and vacation interruption, Journal of Applied Mathematics and Computing, 39 (2012), 131-143. doi: 10.1007/s12190-011-0516-x.

[31]

T. LiZ. Liu and Z. Wang, $M/M/1$ retrial queue with collisions and working vacation interruption under N-policy, RAIRO-Operations Research, 46 (2012), 355-371. doi: 10.1051/ro/2012022.

[32]

Z. Liu and S. Gao, Discrete-time $Geo_1, Geo^X_2/G_1, G_2/1$ retrial queue with two classes of customers and feedback, Mathematical and Computer Modelling, 53 (2011), 1208-1220. doi: 10.1016/j.mcm.2010.11.090.

[33]

T. Phung-Duc, Retrial queueing models: A survey on theory and applications, in Stochastic Operations Research in Business and Industry (eds. T. Dohi, K. Ano and S. Kasahara), World Scientific Publisher, (2017), 1–26.

[34]

T. Phung-Duc, Single server retrial queues with setup time, Journal of Industrial and Management Optimization, 13 (2017), 1329-1345. doi: 10.3934/jimo.2016075.

[35]

T. Phung-Duc, Exact solutions for $M/M/c/$ Setup queues, Telecommunication Systems, 64 (2017), 309-324. doi: 10.1007/s11235-016-0177-z.

[36]

T. Phung-DucW. Rogiest and S. Wittevrongel, Single server retrial queues with speed scaling: Analysis and performance evaluation, Journal of Industrial and Management Optimization, 13 (2017), 1927-1943. doi: 10.3934/jimo.2017025.

[37]

T. Phung-Duc and K. Kawanishi, Impacts of retrials on power-saving policy in data centers, Proceedings of the 11th International Conference on Queueing Theory and Network Applications, 22 (2016), 1-4. doi: 10.1145/3016032.3016047.

[38]

L. R. Ronald, Optimization in Operations Research, Prentice Hall, New Jersey, 1997.

[39]

L. D. Servi and S. G. Finn, $ M/M/1$ queue with working vacations ($ M/M/1/WV$), Performance Evaluation, 50 (2002), 41-52. doi: 10.1016/S0166-5316(02)00057-3.

[40]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, North-Holland Publishing Co., Amsterdam, 1993.

[41]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.

[42]

S. Upadhyaya, Working vacation policy for a discrete-time $Geo^X/Geo/1$ retrial queue, OPSEARCH, 52 (2015), 650-669. doi: 10.1007/s12597-015-0200-2.

[43]

J. Walraevens, D. Claeys and T. Phung-Duc, Asymptotics of queue length distributions in priority retrial queues, preprint, arXiv: 1801.06993.

[44]

J. Wang and Q. Zhao, A discrete-time $Geo/G/1$ retrial queue with starting failures and second optional service, Computers & Mathematics with Applications, 53 (2007), 115-127. doi: 10.1016/j.camwa.2006.10.024.

[45]

M. E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues, IEEE Computer Society Press, Los Alamitos, California, 1994.

[46]

J. WuZ. Liu and Y. Peng, A discrete-time $Geo/G/1$ retrial queue with preemptive resume and collisions, Applied Mathematical Modelling, 35 (2011), 837-847. doi: 10.1016/j.apm.2010.07.039.

[47]

D. A. Wu and H. Takagi, $M/G/1$ queue with multiple working vacations, Performance Evaluation, 63 (2006), 654-681.

[48]

T. Yang and J. G. C. Templeton, A survey on retrial queues, Queueing Systems, 2 (1987), 201-233. doi: 10.1007/BF01158899.

[49]

T. Yang and H. Li, On the steady-state queue size distribution of the discrete-time $Geo/G/1$ queue with repeated customers, Queueing Systems, 21 (1995), 199-215. doi: 10.1007/BF01158581.

[50]

M. YuY. TangY. Fu and L. Pan, $ GI/Geom/1/N/MWV$ queue with changeover time and searching for the optimum service rate in working vacation period, Journal of Computational and Applied Mathematics, 235 (2011), 2170-2184. doi: 10.1016/j.cam.2010.10.013.

Figure 1.  Various time epochs in an early arrival system (EAS)
Figure 2.  The effect of $\alpha $ on $p(0,0,0)$ for different values of $r$, $\chi _b = 0.7$, $\chi _v = 0.4$, $\lambda = 0.2$, $\theta = 0.3$
Figure 3.  The effect of $\chi _v $ on $p(0,0,0)$ for different values of $\theta $, $\chi _b = 0.7$, $\alpha = 0.5$, $\lambda = 0.2$, $r = 0.35$
Figure 4.  The effect of $\alpha $ on $E\left[ {L_1 } \right]$ for different values of $\lambda $, $\chi _b = 0.7$, $\chi _v = 0.4$, $r = 0.35$, $\theta = 0.3$
Figure 5.  The effect of $\alpha $ on $E\left[ {L_2 } \right]$ for different values of $\lambda $, $\chi _b = 0.7$, $\chi _v = 0.4$, $r = 0.35$, $\theta = 0.3$
Figure 6.  The effect of $\chi _v $ on $E[L]$ for different values of $\theta $, $\chi _b = 0.7$, $\alpha = 0.5$, $\lambda = 0.2$, $r = 0.35$
Figure 7.  $E[L]$ versus $\chi _v $ and $\lambda $, $\chi _b = 0.7$, $\alpha = 0.5$, $\theta = 0.3$, $r = 0.35$
Figure 8.  $E[L]$ versus $r$ and $\lambda $, $\chi _b = 0.7$, $\chi _v = 0.4$, $\alpha = 0.5$, $\theta = 0.3$
Figure 9.  The effect of $\alpha $ on the expected operating cost per unit time
Table 1.  The parabolic method in searching for the optimum solution
No. of iterations
0 1 2 3 4 5
$\alpha^{(l)} $ 0.55000 0.60000 0.61667 0.61712 0.61734 0.61735
$\alpha^{(m)} $ 0.60000 0.61667 0.61712 0.61734 0.61735 0.61735
$\alpha^{(r)} $ 0.65000 0.65000 0.65000 0.65000 0.65000 0.65000
$TC\left( {\alpha^{(l)} } \right)$ 443.08917 443.06412 443.06226 443.06226 443.06226 443.06226
$TC\left( {\alpha^{(m)} } \right)$ 443.06412 443.06226 443.06226 443.06226 443.06226 443.06226
$TC\left( {\alpha^{(r)} } \right)$ 443.06912 443.06912 443.06912 443.06912 443.06912 443.06912
$\alpha^\ast $ 0.61667 0.61712 0.61734 0.61735 0.61735 0.61735
$TC\left( {\alpha^\ast } \right)$ 443.06226 443.06226 443.06226 443.06226 443.06226 443.06226
Tolerance 1.66744×10$^{-2}$ 4.40785×10$^{-4}$ 2.27516×10$^{-4}$ 8.98158×10$^{-6}$ 3.20017×10$^{-6}$ 1.62729×10$^{-7}$
No. of iterations
0 1 2 3 4 5
$\alpha^{(l)} $ 0.55000 0.60000 0.61667 0.61712 0.61734 0.61735
$\alpha^{(m)} $ 0.60000 0.61667 0.61712 0.61734 0.61735 0.61735
$\alpha^{(r)} $ 0.65000 0.65000 0.65000 0.65000 0.65000 0.65000
$TC\left( {\alpha^{(l)} } \right)$ 443.08917 443.06412 443.06226 443.06226 443.06226 443.06226
$TC\left( {\alpha^{(m)} } \right)$ 443.06412 443.06226 443.06226 443.06226 443.06226 443.06226
$TC\left( {\alpha^{(r)} } \right)$ 443.06912 443.06912 443.06912 443.06912 443.06912 443.06912
$\alpha^\ast $ 0.61667 0.61712 0.61734 0.61735 0.61735 0.61735
$TC\left( {\alpha^\ast } \right)$ 443.06226 443.06226 443.06226 443.06226 443.06226 443.06226
Tolerance 1.66744×10$^{-2}$ 4.40785×10$^{-4}$ 2.27516×10$^{-4}$ 8.98158×10$^{-6}$ 3.20017×10$^{-6}$ 1.62729×10$^{-7}$
[1]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[2]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[3]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[4]

Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861

[5]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[6]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[7]

Sofian De Clercq, Wouter Rogiest, Bart Steyaert, Herwig Bruneel. Stochastic decomposition in discrete-time queues with generalized vacations and applications. Journal of Industrial & Management Optimization, 2012, 8 (4) : 925-938. doi: 10.3934/jimo.2012.8.925

[8]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[9]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[10]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[11]

Gopinath Panda, Veena Goswami, Abhijit Datta Banik, Dibyajyoti Guha. Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption. Journal of Industrial & Management Optimization, 2016, 12 (3) : 851-878. doi: 10.3934/jimo.2016.12.851

[12]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[13]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[14]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018113

[15]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[16]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial & Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131

[17]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[18]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[19]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-21. doi: 10.3934/jimo.2018030

[20]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (16)
  • HTML views (247)
  • Cited by (0)

Other articles
by authors

[Back to Top]