• Previous Article
    A hybrid chaos firefly algorithm for three-dimensional irregular packing problem
  • JIMO Home
  • This Issue
  • Next Article
    Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records
doi: 10.3934/jimo.2018099

Stability in mean for fuzzy differential equation

College of Mathematics and Information Science, Hebei University, Baoding 071002, China

* Corresponding author: Cuilian You

Received  September 2017 Revised  March 2018 Published  July 2018

Fund Project: The first author is supported by NSFC grant (No.61773150) and Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Fuzzy differential equation driven by Liu process is an important tool to deal with dynamic system in fuzzy environment. Stability for a fuzzy differential equation plays a key role in differential equation, which means influence of the state of a system to small changes in the initial state. In order to discuss the influence of different initial value on the solution, this paper proposes a concept of stability in mean for fuzzy differential equation driven by Liu process. Some stability theorems for fuzzy differential equation being stable in mean are given. In addition, the concept of stability in mean for fuzzy differential equation driven by Liu process is extended to the case of multi-dimensional. A sufficient condition for multi-dimensional fuzzy differential equation being stable in mean is also provided in this paper.

Citation: Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018099
References:
[1]

X. Chen, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.

[2]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process/080831.pdf.

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process/071110.pdf.

[4]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 4 (2008), 243-247.

[5]

V. H. Le, A note on the asymptotic stability of fuzzy differential equations, Ukrainian Mathematical Journal, 57 (2005), 1066-1076. doi: 10.1007/s11253-005-0248-x.

[6]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004.

[7]

B. Liu, Uncertainty Theory 2$^{nd}$ edition, Springer-Verlag, Berlin, 2007.

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.

[9]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.

[10]

M. Mizukoshi, Stability of fuzzy dynamic systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17 (2009), 69-83. doi: 10.1142/S0218488509005747.

[11]

Z. Qin and M. Wen, On analytic functions of complex Liu process, Journal of Intelligent and Fuzzy Systems, 28 (2015), 1627-1633.

[12]

Z. QinM. Bai and R. Dan, A fuzzy control system with application to production planning problems, Information Sciences, 181 (2011), 1018-1027. doi: 10.1016/j.ins.2010.10.029.

[13]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain Systems, 1 (2008), 17-21.

[14]

H. Tian and J. Guo, Stability of fuzzy differential equations, Journal of Taiyuan Normal University(Natural Science Edition), 11 (2012), 7-9.

[15]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22. doi: 10.7858/eamj.2013.002.

[16]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University(Natural Science Edition), 31 (2011), 337-340.

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 3 (2016), 1396-1401. doi: 10.22436/jnsa.009.03.63.

[18]

C. YouW. Wang and H. Huo, Existence and uniqueness theorems for fuzzy differential equations, Journal of Uncertain Systems, 7 (2013), 303-315.

[19]

C. You and W. Wang, Some properties of complex fuzzy integral, Mathematical Problems in Engineering, 2015 (2015), Art. ID 290539, 7 pp. doi: 10.1155/2015/290539.

[20]

Y. Zhu, A fuzzy optimal control model, Journal of Uncertain Systems, 3 (2009), 270-279.

[21]

Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 169-186. doi: 10.1007/s10700-010-9080-3.

show all references

References:
[1]

X. Chen, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151.

[2]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process/080831.pdf.

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process/071110.pdf.

[4]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 4 (2008), 243-247.

[5]

V. H. Le, A note on the asymptotic stability of fuzzy differential equations, Ukrainian Mathematical Journal, 57 (2005), 1066-1076. doi: 10.1007/s11253-005-0248-x.

[6]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004.

[7]

B. Liu, Uncertainty Theory 2$^{nd}$ edition, Springer-Verlag, Berlin, 2007.

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.

[9]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450.

[10]

M. Mizukoshi, Stability of fuzzy dynamic systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17 (2009), 69-83. doi: 10.1142/S0218488509005747.

[11]

Z. Qin and M. Wen, On analytic functions of complex Liu process, Journal of Intelligent and Fuzzy Systems, 28 (2015), 1627-1633.

[12]

Z. QinM. Bai and R. Dan, A fuzzy control system with application to production planning problems, Information Sciences, 181 (2011), 1018-1027. doi: 10.1016/j.ins.2010.10.029.

[13]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain Systems, 1 (2008), 17-21.

[14]

H. Tian and J. Guo, Stability of fuzzy differential equations, Journal of Taiyuan Normal University(Natural Science Edition), 11 (2012), 7-9.

[15]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22. doi: 10.7858/eamj.2013.002.

[16]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University(Natural Science Edition), 31 (2011), 337-340.

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 3 (2016), 1396-1401. doi: 10.22436/jnsa.009.03.63.

[18]

C. YouW. Wang and H. Huo, Existence and uniqueness theorems for fuzzy differential equations, Journal of Uncertain Systems, 7 (2013), 303-315.

[19]

C. You and W. Wang, Some properties of complex fuzzy integral, Mathematical Problems in Engineering, 2015 (2015), Art. ID 290539, 7 pp. doi: 10.1155/2015/290539.

[20]

Y. Zhu, A fuzzy optimal control model, Journal of Uncertain Systems, 3 (2009), 270-279.

[21]

Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 169-186. doi: 10.1007/s10700-010-9080-3.

[1]

Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial & Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285

[2]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[3]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[4]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[5]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[6]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[7]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[8]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[9]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[10]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[11]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[12]

Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008

[13]

Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611

[14]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[15]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[16]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic & Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[17]

Ummugul Bulut, Edward J. Allen. Derivation of SDES for a macroevolutionary process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1777-1792. doi: 10.3934/dcdsb.2013.18.1777

[18]

Ellina Grigorieva, Evgenii Khailov. A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good. Conference Publications, 2003, 2003 (Special) : 359-364. doi: 10.3934/proc.2003.2003.359

[19]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[20]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (13)
  • HTML views (211)
  • Cited by (0)

Other articles
by authors

[Back to Top]