• Previous Article
    The optimal pricing and ordering policy for temperature sensitive products considering the effects of temperature on demand
  • JIMO Home
  • This Issue
  • Next Article
    A simple and efficient technique to accelerate the computation of a nonlocal dielectric model for electrostatics of biomolecule
doi: 10.3934/jimo.2018098

Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy

1. 

Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721102, West Bengal, India

2. 

Faculty of Engineering Management, Chair of Marketing and Economic Engineering, Poznan University of Technology, Ul. Strzelecka 11, 60-965 Poznan, Poland

* Corresponding author: sankroy2006@gmail.com

The author, Magfura Pervin is very much thankful to University Grants Commission (UGC) of India for providing financial support to continue this research work under [MANF(UGC)] scheme: Sanctioned letter number [F1-17.1/2012-13/MANF-2012-13-MUS-WES-19170 /(SA-Ⅲ/Website)] dated 28/02/2013

Received  September 2017 Revised  December 2017 Published  July 2018

Fund Project: The research of Gerhard-Wilhelm Weber (Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey) is partially supported by the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), through the CIDMA - Center for Research and Development in Mathematics and Applications

This article is concerned with a multi-item inventory model for deteriorating items. The model is formed on the basis of a two-level supply chain policy, i.e., based on manufacturer's and retailer's perspective. The deterioration rate is considered as constant. The demand factor of any items suffer from a large amount of stock level; so, we consider stock-dependent demand function. The demand of any item is also dependent on its selling price; thus, a price-dependent demand function is introduced here. The retailer adopts the trade-credit policy for his customers in order to promote market competitiveness. He can earn revenue and interest after the customer pays the amount of purchasing cost to the retailer until the end of the trade-credit period, offered by the supplier. Shortages are allowed in the retailer's model as it is a very realistic item, too. A price discount on backordered commodities is offered for those customers who are willing to backorder their demand. Thereafter, we present an easy analytical solution procedure to find the total profit for both manufacturer and retailer. We also use the classical game theory and Nash equilibrium approach to find an optimal solution of the joint profit. The results are discussed with several numerical examples to illustrate our model and to provide some managerial insights related to the model. Furthermore, a parametric sensitivity analysis of the optimal solutions is provided and a concavity figure of our profit function is supplied to stabilize our model. The paper ends with a conclusion and an outlook to future research projects.

Citation: Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018098
References:
[1]

S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662.

[2]

M. Ben-daya and A. Raouf, On the constrained multi-item single period inventory problem, International Journal of Production Management, 13 (1993), 104-112. doi: 10.1108/01443579310046472.

[3]

L. Benkherouf and M. Omar, Optimal integrated policies for a single-vendor single-buyer time-varying demand model, Computers and Mathematics with Applications, 60 (2010), 2066-2077. doi: 10.1016/j.camwa.2010.07.047.

[4]

D. K. Bhattacharya, Production, manufacturing and logistics on multi-item inventory, European Journal of Operational Research, 162 (2005), 786-791. doi: 10.1016/j.ejor.2003.02.004.

[5]

J. Chen and P. C. Bell, Coordinating a decentralized supply chain with customer returns and price-dependent stochastic demand using a buyback policy, European Journal of Operational Research, 212 (2011), 293-300. doi: 10.1016/j.ejor.2011.01.036.

[6]

V. ChoudriM. Venkatachalam and S. Panayappan, Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money, Journal of Industrial and Management Optimization, 12 (2016), 1153-1172. doi: 10.3934/jimo.2016.12.1153.

[7]

T. K. Datta and K. Paul, An inventory system with stock-dependent, price-sensitive demand rate, Production Planning and Control, 12 (2001), 13-20. doi: 10.1080/09537280150203933.

[8]

P. M. Ghare and G. P. Schrader, A model for an exponentially decaying inventory, Journal of Industrial Engineering, 14 (1963), 238-243.

[9]

A. Goswami and K. S. Chaudhuri, An EOQ model for deteriorating items with shortages and a linear trend in demand, Journal of the Operational Research Society, 42 (1991), 1105-1110.

[10]

S. K. Goyal, Economic order quantity under conditions of permissible delay in payments, Journal of Operational Research Society, 36 (1985), 335-338.

[11]

S. KarT. Roy and M. Maiti, Multi-item inventory model with probabilistic price dependent damand and imprecise goal and constraints, Yugoslav Journal of Operations Research, 11 (2001), 93-103.

[12]

N. A. KurdhiJ. Prasetyo and S. S. Handajani, An inventory model involving back-order price discount when the amount received is uncertain, International Journal of Systems Science, 47 (2016), 662-671. doi: 10.1080/00207721.2014.900136.

[13]

R. I. Levin, C. P. McLaughlin, R. P. Lamone and J. F. Kottas, Productions Operations Management: Contemporary Policy for Managing Operating System, McGraw-Hill Series in Management, New York, 1972.

[14]

T. Y. LinM. T. Chen and K. L. Hou, An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest, Journal of Industrial and Management Optimization, 12 (2016), 1333-1347. doi: 10.3934/jimo.2016.12.1333.

[15]

M. MohammadzadehA. A. Khamseh and M. Mohammadi, A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels, Journal of Industrial and Management Optimization, 13 (2017), 1041-1064. doi: 10.3934/jimo.2016061.

[16]

L. Y. OuyangB. R. Chuang and Y. J. Lin, Impact of backorder discounts on periodic review inventory model, International Journal of Information and Management Sciences, 14 (2003), 1-13.

[17]

S. PalG. S. Mahapatra and G. P. Samanta, An inventory model of price and stock dependent demand rate with deterioration under inflation and delay in payment, International Journal of System Assurance Engineering and Management, 5 (2014), 591-601. doi: 10.1007/s13198-013-0209-y.

[18]

M. PervinG. C. Mahata and S. K. Roy, An inventory model with demand declining market for deteriorating items under trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251. doi: 10.1080/17509653.2015.1081082.

[19]

M. PervinS. K. Roy and G. W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460. doi: 10.1007/s10479-016-2355-5.

[20]

M. PervinS. K. Roy and G. W. Weber, A Two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numerical Algebra, Control and Optimization, 7 (2017), 21-50. doi: 10.3934/naco.2017002.

[21]

M. PervinS. K. Roy and G. W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numerical Algebra, Control and Optimization, 8 (2018), 169-191.

[22]

M. J. Rosenblatt, Multi-item inventory system with budgetary constraint: A comparison between the Lagrangian and fixed cycle approach, International Journal of Production Research, 19 (1981), 331-339. doi: 10.1080/00207548108956661.

[23]

B. SarkarB. Mandal and S. Sarkar, Quality improvement and backorder price discount under controllable lead time in an inventory model, Journal of Manufacturing Systems, 35 (2015), 26-36. doi: 10.1016/j.jmsy.2014.11.012.

[24]

B. SarkarB. Mandal and S. Sarkar, Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages, Journal of Industrial and Management Optimization, 13 (2017), 187-206. doi: 10.3934/jimo.2016011.

[25]

B. SarkarA. MajumderM. SarkarB. K. Dey and G. Roy, Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction, Journal of Industrial and Management Optimization, 13 (2017), 1085-1104. doi: 10.3934/jimo.2016063.

[26]

J. T. Teng and C. T. Chang, Economic production quantity models for deteriorating items with price- and stock-dependent demand, Computers and Operations Research, 32 (2005), 297-308. doi: 10.1016/S0305-0548(03)00237-5.

[27]

A. Thangam and R. Uthayakumar, Two echelon trade credits financing for perishable items in a supply chain when demands on both selling price and credit period, Computers and Industrial Engineering, 57 (2009), 773-786. doi: 10.1016/j.cie.2009.02.005.

[28]

Y. C. Tsao, Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits, Journal of Industrial and Management Optimization, 13 (2017), 327-345. doi: 10.3934/jimo.2016020.

[29]

Q. Wang and M. Parlar, A three-person game theory model arising in stochastic inventory control theory, European Journal of Operational Research, 76 (1994), 83-97. doi: 10.1016/0377-2217(94)90008-6.

[30]

J. WuL. Y. OuyangL. E. Cárdenas-Barrón and S. K. Goyal, Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing, European Journal of Operational Research, 237 (2014), 898-908. doi: 10.1016/j.ejor.2014.03.009.

show all references

References:
[1]

S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662.

[2]

M. Ben-daya and A. Raouf, On the constrained multi-item single period inventory problem, International Journal of Production Management, 13 (1993), 104-112. doi: 10.1108/01443579310046472.

[3]

L. Benkherouf and M. Omar, Optimal integrated policies for a single-vendor single-buyer time-varying demand model, Computers and Mathematics with Applications, 60 (2010), 2066-2077. doi: 10.1016/j.camwa.2010.07.047.

[4]

D. K. Bhattacharya, Production, manufacturing and logistics on multi-item inventory, European Journal of Operational Research, 162 (2005), 786-791. doi: 10.1016/j.ejor.2003.02.004.

[5]

J. Chen and P. C. Bell, Coordinating a decentralized supply chain with customer returns and price-dependent stochastic demand using a buyback policy, European Journal of Operational Research, 212 (2011), 293-300. doi: 10.1016/j.ejor.2011.01.036.

[6]

V. ChoudriM. Venkatachalam and S. Panayappan, Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money, Journal of Industrial and Management Optimization, 12 (2016), 1153-1172. doi: 10.3934/jimo.2016.12.1153.

[7]

T. K. Datta and K. Paul, An inventory system with stock-dependent, price-sensitive demand rate, Production Planning and Control, 12 (2001), 13-20. doi: 10.1080/09537280150203933.

[8]

P. M. Ghare and G. P. Schrader, A model for an exponentially decaying inventory, Journal of Industrial Engineering, 14 (1963), 238-243.

[9]

A. Goswami and K. S. Chaudhuri, An EOQ model for deteriorating items with shortages and a linear trend in demand, Journal of the Operational Research Society, 42 (1991), 1105-1110.

[10]

S. K. Goyal, Economic order quantity under conditions of permissible delay in payments, Journal of Operational Research Society, 36 (1985), 335-338.

[11]

S. KarT. Roy and M. Maiti, Multi-item inventory model with probabilistic price dependent damand and imprecise goal and constraints, Yugoslav Journal of Operations Research, 11 (2001), 93-103.

[12]

N. A. KurdhiJ. Prasetyo and S. S. Handajani, An inventory model involving back-order price discount when the amount received is uncertain, International Journal of Systems Science, 47 (2016), 662-671. doi: 10.1080/00207721.2014.900136.

[13]

R. I. Levin, C. P. McLaughlin, R. P. Lamone and J. F. Kottas, Productions Operations Management: Contemporary Policy for Managing Operating System, McGraw-Hill Series in Management, New York, 1972.

[14]

T. Y. LinM. T. Chen and K. L. Hou, An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest, Journal of Industrial and Management Optimization, 12 (2016), 1333-1347. doi: 10.3934/jimo.2016.12.1333.

[15]

M. MohammadzadehA. A. Khamseh and M. Mohammadi, A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels, Journal of Industrial and Management Optimization, 13 (2017), 1041-1064. doi: 10.3934/jimo.2016061.

[16]

L. Y. OuyangB. R. Chuang and Y. J. Lin, Impact of backorder discounts on periodic review inventory model, International Journal of Information and Management Sciences, 14 (2003), 1-13.

[17]

S. PalG. S. Mahapatra and G. P. Samanta, An inventory model of price and stock dependent demand rate with deterioration under inflation and delay in payment, International Journal of System Assurance Engineering and Management, 5 (2014), 591-601. doi: 10.1007/s13198-013-0209-y.

[18]

M. PervinG. C. Mahata and S. K. Roy, An inventory model with demand declining market for deteriorating items under trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251. doi: 10.1080/17509653.2015.1081082.

[19]

M. PervinS. K. Roy and G. W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460. doi: 10.1007/s10479-016-2355-5.

[20]

M. PervinS. K. Roy and G. W. Weber, A Two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numerical Algebra, Control and Optimization, 7 (2017), 21-50. doi: 10.3934/naco.2017002.

[21]

M. PervinS. K. Roy and G. W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numerical Algebra, Control and Optimization, 8 (2018), 169-191.

[22]

M. J. Rosenblatt, Multi-item inventory system with budgetary constraint: A comparison between the Lagrangian and fixed cycle approach, International Journal of Production Research, 19 (1981), 331-339. doi: 10.1080/00207548108956661.

[23]

B. SarkarB. Mandal and S. Sarkar, Quality improvement and backorder price discount under controllable lead time in an inventory model, Journal of Manufacturing Systems, 35 (2015), 26-36. doi: 10.1016/j.jmsy.2014.11.012.

[24]

B. SarkarB. Mandal and S. Sarkar, Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages, Journal of Industrial and Management Optimization, 13 (2017), 187-206. doi: 10.3934/jimo.2016011.

[25]

B. SarkarA. MajumderM. SarkarB. K. Dey and G. Roy, Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction, Journal of Industrial and Management Optimization, 13 (2017), 1085-1104. doi: 10.3934/jimo.2016063.

[26]

J. T. Teng and C. T. Chang, Economic production quantity models for deteriorating items with price- and stock-dependent demand, Computers and Operations Research, 32 (2005), 297-308. doi: 10.1016/S0305-0548(03)00237-5.

[27]

A. Thangam and R. Uthayakumar, Two echelon trade credits financing for perishable items in a supply chain when demands on both selling price and credit period, Computers and Industrial Engineering, 57 (2009), 773-786. doi: 10.1016/j.cie.2009.02.005.

[28]

Y. C. Tsao, Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits, Journal of Industrial and Management Optimization, 13 (2017), 327-345. doi: 10.3934/jimo.2016020.

[29]

Q. Wang and M. Parlar, A three-person game theory model arising in stochastic inventory control theory, European Journal of Operational Research, 76 (1994), 83-97. doi: 10.1016/0377-2217(94)90008-6.

[30]

J. WuL. Y. OuyangL. E. Cárdenas-Barrón and S. K. Goyal, Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing, European Journal of Operational Research, 237 (2014), 898-908. doi: 10.1016/j.ejor.2014.03.009.

Figure 1.  Proposed inventory control model for manufacturer
Figure 2.  Proposed inventory control model for retailer
Figure 4.  Profit function in respect of deterioration
Figure 3.  The concavity of the total profit. Included are $t_1$, $T$ and the total profit $M_1(T, t_1)$, along the x-axis, the y-axis and the z-axis, respectively
Table 1.  Contributions of some authors related to inventory model
Authors Multi items Two-echelon model Stock- and Price- dependent demand Deterio- rations Trade-credit policy Price discount on backorders
Lenard and Roy (1995)
Kar et al. (2001)
Ben-daya and Raouf (1993)
Chen and Bell (2011)
Datta and Paul (2001)
Pal et al. (2014)
Teng and Chang (2005)
Thangam and Uthayakumar (2009)
Pervin et al. (2016)
Goswami and Chaudhuri (1991)
Wu et al. (2014)
Sarkar et al. (2017)
Pervin et al. (2017)
Ouyang et al. (2015)
This paper
Authors Multi items Two-echelon model Stock- and Price- dependent demand Deterio- rations Trade-credit policy Price discount on backorders
Lenard and Roy (1995)
Kar et al. (2001)
Ben-daya and Raouf (1993)
Chen and Bell (2011)
Datta and Paul (2001)
Pal et al. (2014)
Teng and Chang (2005)
Thangam and Uthayakumar (2009)
Pervin et al. (2016)
Goswami and Chaudhuri (1991)
Wu et al. (2014)
Sarkar et al. (2017)
Pervin et al. (2017)
Ouyang et al. (2015)
This paper
Table 2.  Computational parametric configuration for 3 items
Parameters i=1 i=2 i=3 Joint effects of all 3 items
$A_i$ 30 35 40 105
$p_i$ 10 15 20 45
$k_i$ 500 600 700 1800
$\theta_i$ 0.05 0.07 0.09 0.21
$c_i$ 10 14 18 42
$q_i$ 5 10 15 30
$s_i$ 0.12 0.18 0.23 0.53
$l_i$ 0.20 0.25 0.30 0.75
$a_i$ 0.50 0.55 0.60 1.65
$b_i$ 0.30 0.35 0.40 1.05
$\delta_i$ 0.7 0.8 0.9 2.4
$\alpha_i$ 0.2 0.3 0.4 0.9
$\beta_i$ 0.5 0.6 0.7 1.8
$\gamma_i$ 0.4 0.6 0.8 1.8
$M$ 1.2 1.6 2.0 4.8
$I_e$ 0.8 1.0 1.2 3.0
$I_c$ 0.5 0.7 0.9 2.1
$t_1$ 10.62 17.55 29.37 32.76
$t_2$ 9.20 15.72 22.18 29.18
$t_3$ 15.11 19.83 26.07 36.30
$t_4$ 13.57 22.15 34.49 35.02
$M_r(T, t_1)$ 26.6214 42.1753 63.8068 91.4128
$R_{1r}(T, M)$ 95.1506 117.3394 182.7139 220.6210
$R_{2r}(T, M)$ 165.3726 199.5379 274.2680 326.1660
Parameters i=1 i=2 i=3 Joint effects of all 3 items
$A_i$ 30 35 40 105
$p_i$ 10 15 20 45
$k_i$ 500 600 700 1800
$\theta_i$ 0.05 0.07 0.09 0.21
$c_i$ 10 14 18 42
$q_i$ 5 10 15 30
$s_i$ 0.12 0.18 0.23 0.53
$l_i$ 0.20 0.25 0.30 0.75
$a_i$ 0.50 0.55 0.60 1.65
$b_i$ 0.30 0.35 0.40 1.05
$\delta_i$ 0.7 0.8 0.9 2.4
$\alpha_i$ 0.2 0.3 0.4 0.9
$\beta_i$ 0.5 0.6 0.7 1.8
$\gamma_i$ 0.4 0.6 0.8 1.8
$M$ 1.2 1.6 2.0 4.8
$I_e$ 0.8 1.0 1.2 3.0
$I_c$ 0.5 0.7 0.9 2.1
$t_1$ 10.62 17.55 29.37 32.76
$t_2$ 9.20 15.72 22.18 29.18
$t_3$ 15.11 19.83 26.07 36.30
$t_4$ 13.57 22.15 34.49 35.02
$M_r(T, t_1)$ 26.6214 42.1753 63.8068 91.4128
$R_{1r}(T, M)$ 95.1506 117.3394 182.7139 220.6210
$R_{2r}(T, M)$ 165.3726 199.5379 274.2680 326.1660
Table 3.  Sensitivity analysis for the parameters $\theta_i (i = 1, 2, 3)$. $JE$ represents the joint effects, respectively
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$\theta_1$ 0.035 0.04 0.045 0.055 0.06 0.065
$M_1(T, t_1)$ 28.6725 28.4218 28.2240 27.9031 27.7633 27.5502
$R_{11}(T, M)$ 96.1162 95.9631 95.8812 95.7243 95.5708 95.3276
$R_{21}(T, M)$ 166.502 166.372 166.127 165.872 165.609 165.421
$\theta_2$ 0.049 0.056 0.063 0.077 0.084 0.091
$M_1(T, t_1)$ 43.3213 43.1045 42.8871 42.7490 42.5289 42.3407
$R_{11}(T, M)$ 118.6731 118.4830 118.2571 117.9013 117.7856 117.5126
$R_{21}(T, M)$ 199.410 199.107 198.884 198.619 198.470 198.159
$\theta_3$ 0.063 0.072 0.081 0.099 0.108 0.117
$M_1(T, t_1)$ 65.1173 64.8243 64.5740 64.2581 63.8056 63.5731
$R_{11}(T, M)$ 183.9920 183.7526 183.4911 183.2354 182.8744 182.8530
$R_{21}(T, M)$ 273.576 273.291 272.876 272.651 272.304 272.118
$JE((M_i (T, t_1))_{i=1, 2, 3})$ 324.13 307.47 299.53 271.84 256.77 231.64
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 573.38 529.13 478.46 431.47 390.52 358.30
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 642.10 618.34 583.57 549.73 499.05 452.17
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$\theta_1$ 0.035 0.04 0.045 0.055 0.06 0.065
$M_1(T, t_1)$ 28.6725 28.4218 28.2240 27.9031 27.7633 27.5502
$R_{11}(T, M)$ 96.1162 95.9631 95.8812 95.7243 95.5708 95.3276
$R_{21}(T, M)$ 166.502 166.372 166.127 165.872 165.609 165.421
$\theta_2$ 0.049 0.056 0.063 0.077 0.084 0.091
$M_1(T, t_1)$ 43.3213 43.1045 42.8871 42.7490 42.5289 42.3407
$R_{11}(T, M)$ 118.6731 118.4830 118.2571 117.9013 117.7856 117.5126
$R_{21}(T, M)$ 199.410 199.107 198.884 198.619 198.470 198.159
$\theta_3$ 0.063 0.072 0.081 0.099 0.108 0.117
$M_1(T, t_1)$ 65.1173 64.8243 64.5740 64.2581 63.8056 63.5731
$R_{11}(T, M)$ 183.9920 183.7526 183.4911 183.2354 182.8744 182.8530
$R_{21}(T, M)$ 273.576 273.291 272.876 272.651 272.304 272.118
$JE((M_i (T, t_1))_{i=1, 2, 3})$ 324.13 307.47 299.53 271.84 256.77 231.64
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 573.38 529.13 478.46 431.47 390.52 358.30
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 642.10 618.34 583.57 549.73 499.05 452.17
Table 4.  Sensitivity analysis for the parameters $b_i (i = 1, 2, 3)$. $JE$ represents the joint effects, respectively
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$b_1$ 0.21 0.24 0.27 0.33 0.36 0.39
$M_1(T, t_1)$ 27.6820 27.8921 28.1675 28.4691 28.8722 29.3225
$R_{11}(T, M)$ 96.3546 96.6704 96.9124 97.3510 97.6021 97.9146
$R_{21}(T, M)$ 165.318 165.702 165.993 166.247 166.583 166.875
$b_2$ 0.245 0.28 0.315 0.385 0.420 0.455
$M_1(T, t_1)$ 42.6813 42.8904 43.3612 43.6675 43.9130 44.4362
$R_{11}(T, M)$ 117.1325 117.4076 117.7451 118.2169 118.5306 118.8539
$R_{21}(T, M)$ 198.478 198.825 199.350 199.718 199.958 237.574
$b_3$ 0.28 0.32 0.36 0.44 0.48 0.52
$M_1(T, t_1)$ 66.3753 66.5206 66.8347 67.2541 67.6088 67.9346
$R_{11}(T, M)$ 182.7090 182.9364 183.2674 183.5104 183.7984 184.2576
$R_{21}(T, M)$ 273.157 273.409 273.749 273.986 274.370 274.875
$JE((M_i (T, t_1))_{i=1, 2, 3})$ 142.39 187.52 224.78 279.70 330.87 367.42
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 413.49 437.61 475.23 493.27 534.17 562.19
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 650.14 688.07 723.47 767.33 784.35 820.69
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$b_1$ 0.21 0.24 0.27 0.33 0.36 0.39
$M_1(T, t_1)$ 27.6820 27.8921 28.1675 28.4691 28.8722 29.3225
$R_{11}(T, M)$ 96.3546 96.6704 96.9124 97.3510 97.6021 97.9146
$R_{21}(T, M)$ 165.318 165.702 165.993 166.247 166.583 166.875
$b_2$ 0.245 0.28 0.315 0.385 0.420 0.455
$M_1(T, t_1)$ 42.6813 42.8904 43.3612 43.6675 43.9130 44.4362
$R_{11}(T, M)$ 117.1325 117.4076 117.7451 118.2169 118.5306 118.8539
$R_{21}(T, M)$ 198.478 198.825 199.350 199.718 199.958 237.574
$b_3$ 0.28 0.32 0.36 0.44 0.48 0.52
$M_1(T, t_1)$ 66.3753 66.5206 66.8347 67.2541 67.6088 67.9346
$R_{11}(T, M)$ 182.7090 182.9364 183.2674 183.5104 183.7984 184.2576
$R_{21}(T, M)$ 273.157 273.409 273.749 273.986 274.370 274.875
$JE((M_i (T, t_1))_{i=1, 2, 3})$ 142.39 187.52 224.78 279.70 330.87 367.42
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 413.49 437.61 475.23 493.27 534.17 562.19
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 650.14 688.07 723.47 767.33 784.35 820.69
Table 5.  Sensitivity analysis for the parameters $\beta_i(i = 1, 2, 3)$. $JE$ represents the joint effects, respectively
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$\beta_1$ 0.35 0.40 0.45 0.55 0.60 0.65
$M_1(T, t_1)$ 30.2670 30.8305 31.4758 32.0165 32.7736 33.3814
$R_{11}(T, M)$ 98.4236 98.9470 99.5024 100.0631 100.5861 101.1425
$R_{21}(T, M)$ 167.264 167.752 168.369 168.804 169.362 169.972
$\beta_2$ 0.42 0.48 0.54 0.66 0.72 0.78
$M_1(T, t_1)$ 45.6149 46.1543 46.5783 47.1462 47.6388 48.3592
$R_{11}(T, M)$ 118.4268 118.9005 119.2457 119.8319 120.3670 120.7591
$R_{21}(T, M)$ 210.375 210.763 211.136 211.545 211.987 212.307
$\beta_3$ 0.49 0.56 0.63 0.77 0.84 0.91
$M_1(T, t_1)$ 68.3871 68.8414 69.4206 70.9126 70.4756 70.8225
$R_{11}(T, M)$ 185.2477 185.6470 186.0853 186.4800 186.8175 187.2052
$R_{21}(T, M)$ 275.8145 276.335 276.857 277.3670 277.8950 277.4352
$JE((M_i (T, t_1))_{i=1, 2, 3})$ 150.26 163.73 175.44 189.71 213.46 252.04
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 409.24 422.19 435.07 442.86 453.20 467.15
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 660.14 671.42 684.35 697.23 713.75 729.06
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$\beta_1$ 0.35 0.40 0.45 0.55 0.60 0.65
$M_1(T, t_1)$ 30.2670 30.8305 31.4758 32.0165 32.7736 33.3814
$R_{11}(T, M)$ 98.4236 98.9470 99.5024 100.0631 100.5861 101.1425
$R_{21}(T, M)$ 167.264 167.752 168.369 168.804 169.362 169.972
$\beta_2$ 0.42 0.48 0.54 0.66 0.72 0.78
$M_1(T, t_1)$ 45.6149 46.1543 46.5783 47.1462 47.6388 48.3592
$R_{11}(T, M)$ 118.4268 118.9005 119.2457 119.8319 120.3670 120.7591
$R_{21}(T, M)$ 210.375 210.763 211.136 211.545 211.987 212.307
$\beta_3$ 0.49 0.56 0.63 0.77 0.84 0.91
$M_1(T, t_1)$ 68.3871 68.8414 69.4206 70.9126 70.4756 70.8225
$R_{11}(T, M)$ 185.2477 185.6470 186.0853 186.4800 186.8175 187.2052
$R_{21}(T, M)$ 275.8145 276.335 276.857 277.3670 277.8950 277.4352
$JE((M_i (T, t_1))_{i=1, 2, 3})$ 150.26 163.73 175.44 189.71 213.46 252.04
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 409.24 422.19 435.07 442.86 453.20 467.15
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 660.14 671.42 684.35 697.23 713.75 729.06
Table 6.  Sensitivity analysis for the parameters $\gamma_i(i = 1, 2, 3)$. $JE$ represents the joint effects, respectively
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$\gamma_1$ 0.28 0.32 0.36 0.44 0.48 0.52
$M_1(T, t_1)$ 28.2743 28.6183 29.0179 29.3746 29.6524 29.9032
$R_{11}(T, M)$ 97.3176 97.6480 97.9208 98.4635 98.7705 99.1432
$R_{21}(T, M)$ 165.418 165.727 166.284 166.546 166.920 167.335
$\gamma_2$ 0.42 0.48 0.54 0.66 0.72 0.78
$M_1(T, t_1)$ 44.1267 44.4725 44.8213 45.2018 45.5537 45.8715
$R_{11}(T, M)$ 116.4503 116.6931 116.9917 117.4361 117.8543 118.5174
$R_{21}(T, M)$ 206.421 206.885 207.367 207.753 208.290 208.668
$\gamma_3$ 0.56 0.64 0.72 0.88 0.96 1.04
$M_1(T, t_1)$ 67.3417 67.8864 68.4011 68.9172 79.5140 79.8711
$R_{11}(T, M)$ 189.1106 189.6587 190.2275 190.6340 191.3719 191.5603
$R_{21}(T, M)$ 279.9902 280.4275 280.8670 281.2552 282.7732 283.5112
$JE((M_i(T, t_1))_{i=1, 2, 3})$ 140.31 153.10 161.49 175.25 183.39 199.37
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 408.72 417.28 425.01 437.26 445.49 467.00
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 657.29 669.81 672.31 685.01 693.33 707.46
Parameter $-30\%$ $-20\%$ $-10\%$ $10\%$ $20\%$ $30\%$
$\gamma_1$ 0.28 0.32 0.36 0.44 0.48 0.52
$M_1(T, t_1)$ 28.2743 28.6183 29.0179 29.3746 29.6524 29.9032
$R_{11}(T, M)$ 97.3176 97.6480 97.9208 98.4635 98.7705 99.1432
$R_{21}(T, M)$ 165.418 165.727 166.284 166.546 166.920 167.335
$\gamma_2$ 0.42 0.48 0.54 0.66 0.72 0.78
$M_1(T, t_1)$ 44.1267 44.4725 44.8213 45.2018 45.5537 45.8715
$R_{11}(T, M)$ 116.4503 116.6931 116.9917 117.4361 117.8543 118.5174
$R_{21}(T, M)$ 206.421 206.885 207.367 207.753 208.290 208.668
$\gamma_3$ 0.56 0.64 0.72 0.88 0.96 1.04
$M_1(T, t_1)$ 67.3417 67.8864 68.4011 68.9172 79.5140 79.8711
$R_{11}(T, M)$ 189.1106 189.6587 190.2275 190.6340 191.3719 191.5603
$R_{21}(T, M)$ 279.9902 280.4275 280.8670 281.2552 282.7732 283.5112
$JE((M_i(T, t_1))_{i=1, 2, 3})$ 140.31 153.10 161.49 175.25 183.39 199.37
$JE((R_{1i}(T, M))_{i=1, 2, 3})$ 408.72 417.28 425.01 437.26 445.49 467.00
$JE((R_{2i}(T, M))_{i=1, 2, 3})$ 657.29 669.81 672.31 685.01 693.33 707.46
[1]

Sankar Kumar Roy, Magfura Pervin, Gerhard Wilhelm Weber. A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018167

[2]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[3]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002

[4]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010

[5]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[6]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[7]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[8]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018115

[9]

M. M. Ali, L. Masinga. A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change. Journal of Industrial & Management Optimization, 2007, 3 (1) : 139-154. doi: 10.3934/jimo.2007.3.139

[10]

Alain Bensoussan, Sonny Skaaning. Base stock list price policy in continuous time. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 1-28. doi: 10.3934/dcdsb.2017001

[11]

Miriam Kiessling, Sascha Kurz, Jörg Rambau. The integrated size and price optimization problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 669-693. doi: 10.3934/naco.2012.2.669

[12]

Biswajit Sarkar, Buddhadev Mandal, Sumon Sarkar. Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages. Journal of Industrial & Management Optimization, 2017, 13 (1) : 187-206. doi: 10.3934/jimo.2016011

[13]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[14]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-27. doi: 10.3934/jimo.2018096

[15]

Xiao-Qian Jiang, Lun-Chuan Zhang. Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 915-927. doi: 10.3934/dcdss.2019061

[16]

T. W. Leung, Chi Kin Chan, Marvin D. Troutt. A mixed simulated annealing-genetic algorithm approach to the multi-buyer multi-item joint replenishment problem: advantages of meta-heuristics. Journal of Industrial & Management Optimization, 2008, 4 (1) : 53-66. doi: 10.3934/jimo.2008.4.53

[17]

Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012

[18]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[19]

Zhenwei Luo, Jinting Wang. The optimal price discount, order quantity and minimum quantity in newsvendor model with group purchase. Journal of Industrial & Management Optimization, 2015, 11 (1) : 1-11. doi: 10.3934/jimo.2015.11.1

[20]

Yu-Chung Tsao. Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits. Journal of Industrial & Management Optimization, 2017, 13 (1) : 329-347. doi: 10.3934/jimo.2016020

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]