doi: 10.3934/jimo.2018096

Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers

1. 

Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore, Paschim Medinipur, West Bengal 721102, India

2. 

Department of Mathematics, Calcutta Institute of Technology, Uluberia, Howrah, West Bengal 711316, India

3. 

Department of Mathematics, Mahishadal Raj College, Mahishadal, Purba Medinipur, West Bengal 721628, India

* Corresponding author

Received  August 2017 Revised  February 2018 Published  July 2018

In the recently published paper [Gour Chandra Mahata and Sujit Kumar De, Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, International Journal of Management Science and Engineering Management, 2017, DOI:10.1080/17509653.2015.1109482], a supplier-retailer supply chain model of a deteriorating item with maximum lifetime and partial trade credit to credit risk customers is studied. In their study, unfortunately the amount of the payable bank interest due to the deteriorated units is omitted in the retailer's profit function for making the marketing decision. Some other unrealistic studies are also found in the numerical section of the paper. In this study those non-trivial flaws are identified and technically corrected. After correction, the theoretical existence of the optimal solutions of different scenarios are established and the solutions are derived using a soft computing technique.

Citation: Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018096
References:
[1]

S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662. doi: 10.2307/2584538.

[2]

K. Annaduari and R. Uthayakumar, Analysis of partial trade credit financing in a supply chain by EOQ-based model for decaying items with shortage, The International Journal of Advanced Manufacturing Technology, 61 (2012), 1139-1159. doi: 10.1007/s00170-011-3765-9.

[3]

K. Annaduari and R. Uthayakumar, Two-echelon inventory model for deteriorating items with credit period dependent demand including shortages under trade credit, Optimization Letters, 7 (2013), 1227-1249. doi: 10.1007/s11590-012-0499-z.

[4]

M. BakkerJ. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284. doi: 10.1016/j.ejor.2012.03.004.

[5]

C. T. ChangL. Y. Ouyang and J. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity, Applied Mathematical Modelling, 27 (2003), 983-996. doi: 10.1016/S0307-904X(03)00131-8.

[6]

K. J. Chung and T. S. Huang, The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing, International Journal of Production Economics, 106 (2007), 127-145. doi: 10.1016/j.ijpe.2006.05.008.

[7]

R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Transitions, 5 (1973), 323-326. doi: 10.1080/05695557308974918.

[8]

U. Dave and L. K. Patel, (T, $S_{i}$) policy inventory model for deteriorating items with time proportional demand, Journal of the Operational Research Society, 32 (1981), 137-142. doi: 10.1057/jors.1981.27.

[9]

A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley and Sons Ltd., 2005.

[10]

P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system, Journal of Industrial Engineering, 21 (1963), 449-460.

[11]

A. Goswami and K. S. Chaudhuri, An EOQ model for deteriorating items with shortages and a linear trend in demand, The Journal of the Operational Research Society, 42 (1991), 1105-1110. doi: 10.2307/2582957.

[12]

S. K. Goyal, Economic order quantity under conditions of permissible delay in payment, The Journal of the Operational Research Society, 36 (1985), 335-338. doi: 10.2307/2582421.

[13]

P. GuchhaitM. K. Maiti and M. Maiti, Inventory model of a deteriorating item with price and credit linked fuzzy demand : A fuzzy differential equation approach, OPSEARCH, 51 (2014), 321-353. doi: 10.1007/s12597-013-0153-2.

[14]

P. GuchhaitM. K. Maiti and M. Maiti, Two storage inventory model of a deteriorating item with variable demand under partial credit period, Applied Soft Computing, 13 (2013), 428-448. doi: 10.1016/j.asoc.2012.07.028.

[15]

M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand, The Journal of the Operation Research Society, 47 (1996), 1228-1246. doi: 10.2307/3010036.

[16]

C. K. Huang, An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments, Applied Mathematical Modelling, 34 (2010), 1352-1359. doi: 10.1016/j.apm.2009.08.015.

[17]

D. HuangL. Q. Ouyang and H. Zhou, Note on: Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 138 (2012), 117-124. doi: 10.1016/j.ijpe.2012.03.008.

[18]

Y. F. Huang, Economic order quantity under conditionally permissible delay in payments, European Journal of Operational Research, 176 (2007), 911-924. doi: 10.1016/j.ejor.2005.08.017.

[19]

Y. F. Huang, Optimal retailer's ordering policies in the EOQ model under trade credit financing, Journal of the Operational Research Society, 54 (2003), 1011-1015. doi: 10.1057/palgrave.jors.2601588.

[20]

G. C. Mahata, An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain, Expert Systems with Applications, 39 (2012), 3537-3550. doi: 10.1016/j.eswa.2011.09.044.

[21]

G. C. Mahata, Retailer's optimal credit period and cycle time in a supply chain for deteriorating items with up-stream and down-stream trade credits, Journal of Industrial Engineering International, 11 (2015), 353-366. doi: 10.1007/s40092-015-0106-x.

[22]

G. C. Mahata and S. K. De, Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, International Journal of Management Science and Engineering Management, 12 (2017), 21-32. doi: 10.1080/17509653.2015.1109482.

[23]

P. Mahata and G. C. Mahata, Economic production quantity model with trade credit financing and price-discount offer for non-decreasing time varying demand pattern, International Journal of Procurement Management, 7 (2014), 563-581. doi: 10.1504/IJPM.2014.064619.

[24]

M. K. Maiti, A fuzzy genetic algorithm with varying population size to solve an inventory model with credit-linked promotional demand in an imprecise planning horizon, European Journal of Operational Research, 213 (2011), 96-106. doi: 10.1016/j.ejor.2011.02.014.

[25]

J. MinY. W. Zhou and J. Zhao, An inventory model for deteriorating items under stock-dependent demand and two-level trade credit, Applied Mathematical Modelling, 34 (2010), 3273-3285. doi: 10.1016/j.apm.2010.02.019.

[26]

L. Y. OuyangJ. T. TengS. K. Goyal and C. T. Yang, An economic order quantity model for deteriorating items with partially permissible delay in payments to order quantity, European Journal of Operational Research, 194 (2009), 418-431. doi: 10.1016/j.ejor.2007.12.018.

[27]

G. C. Philip, A generalized EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 6 (1974), 159-162. doi: 10.1080/05695557408974948.

[28]

P. PramanikM. K. Maiti and M. Maiti, A supply chain with variable demand under three level trade credit policy, Computers & Industrial Engineering, 106 (2017), 205-221. doi: 10.1016/j.cie.2017.02.007.

[29]

P. PramanikM. K. Maiti and M. Maiti, An appropriate business strategy for a sale item, OPSEARCH, 55 (2018), 85-106. doi: 10.1007/s12597-017-0310-0.

[30]

P. PramanikM. K. Maiti and M. Maiti, Three level partial trade credit with promotional cost sharing, Applied Soft Computing, 58 (2017), 553-575. doi: 10.1016/j.asoc.2017.04.013.

[31]

B. Sarkar and S. Sarkar, Variable deterioration and demand-An inventory model, Economic Modelling, 31 (2013), 548-556. doi: 10.1016/j.econmod.2012.11.045.

[32]

D. SeifertR. W. Seifert and M. Protopappa-Sieke, A review of trade credit literature: opportunity for research in operations, European Journal of Operational Research, 231 (2013), 245-256. doi: 10.1016/j.ejor.2013.03.016.

[33]

B. K. SettS. SarkarB. Sarkar and W. Y. Yun, Optimal replenishment policy with variable deterioration for fixed-lifetime products, Scientia Iranica, 23 (2016), 2318-2329. doi: 10.24200/sci.2016.3959.

[34]

T. Singh and H. Pattanayak, An EOQ model for deteriorating items with linear demand, variable deterioration and partial backlogging, Journal of Service Science and Management, 6 (2013), 186-190. doi: 10.4236/jssm.2013.62019.

[35]

S. TayalS. R. Singh and R. Sharma, Multi Item Inventory Model for Deteriorating Items with Expiration Date and Allowable Shortages, Indian Journal of Science and Technology, 7 (2014), 463-471.

[36]

J. T. Teng, Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad customers, International Journal of Production Economics, 119 (2009), 415-423. doi: 10.1016/j.ijpe.2009.04.004.

[37]

J. T. TengH. J. ChangC. Y. Dye and C. H. Hung, An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operation Research Letters, 30 (2002), 387-393. doi: 10.1016/S0167-6377(02)00150-5.

[38]

J. T. TengM. S. ChernH. L. Yang and Y. J. Wang, Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand, Operation Research Letters, 24 (1999), 65-72. doi: 10.1016/S0167-6377(98)00042-X.

[39]

J. T. Teng and S. K. Goyal, Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits, Journal of the Operational Research Society, 58 (2007), 1252-1255. doi: 10.1057/palgrave.jors.2602404.

[40]

Y. C. Tsao, Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 127 (2010), 226-237. doi: 10.1016/j.ijpe.2009.08.010.

show all references

References:
[1]

S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments, The Journal of the Operational Research Society, 46 (1995), 658-662. doi: 10.2307/2584538.

[2]

K. Annaduari and R. Uthayakumar, Analysis of partial trade credit financing in a supply chain by EOQ-based model for decaying items with shortage, The International Journal of Advanced Manufacturing Technology, 61 (2012), 1139-1159. doi: 10.1007/s00170-011-3765-9.

[3]

K. Annaduari and R. Uthayakumar, Two-echelon inventory model for deteriorating items with credit period dependent demand including shortages under trade credit, Optimization Letters, 7 (2013), 1227-1249. doi: 10.1007/s11590-012-0499-z.

[4]

M. BakkerJ. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284. doi: 10.1016/j.ejor.2012.03.004.

[5]

C. T. ChangL. Y. Ouyang and J. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity, Applied Mathematical Modelling, 27 (2003), 983-996. doi: 10.1016/S0307-904X(03)00131-8.

[6]

K. J. Chung and T. S. Huang, The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing, International Journal of Production Economics, 106 (2007), 127-145. doi: 10.1016/j.ijpe.2006.05.008.

[7]

R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Transitions, 5 (1973), 323-326. doi: 10.1080/05695557308974918.

[8]

U. Dave and L. K. Patel, (T, $S_{i}$) policy inventory model for deteriorating items with time proportional demand, Journal of the Operational Research Society, 32 (1981), 137-142. doi: 10.1057/jors.1981.27.

[9]

A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley and Sons Ltd., 2005.

[10]

P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system, Journal of Industrial Engineering, 21 (1963), 449-460.

[11]

A. Goswami and K. S. Chaudhuri, An EOQ model for deteriorating items with shortages and a linear trend in demand, The Journal of the Operational Research Society, 42 (1991), 1105-1110. doi: 10.2307/2582957.

[12]

S. K. Goyal, Economic order quantity under conditions of permissible delay in payment, The Journal of the Operational Research Society, 36 (1985), 335-338. doi: 10.2307/2582421.

[13]

P. GuchhaitM. K. Maiti and M. Maiti, Inventory model of a deteriorating item with price and credit linked fuzzy demand : A fuzzy differential equation approach, OPSEARCH, 51 (2014), 321-353. doi: 10.1007/s12597-013-0153-2.

[14]

P. GuchhaitM. K. Maiti and M. Maiti, Two storage inventory model of a deteriorating item with variable demand under partial credit period, Applied Soft Computing, 13 (2013), 428-448. doi: 10.1016/j.asoc.2012.07.028.

[15]

M. A. Hariga, Optimal EOQ models for deteriorating items with time-varying demand, The Journal of the Operation Research Society, 47 (1996), 1228-1246. doi: 10.2307/3010036.

[16]

C. K. Huang, An integrated inventory model under conditions of order processing cost reduction and permissible delay in payments, Applied Mathematical Modelling, 34 (2010), 1352-1359. doi: 10.1016/j.apm.2009.08.015.

[17]

D. HuangL. Q. Ouyang and H. Zhou, Note on: Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 138 (2012), 117-124. doi: 10.1016/j.ijpe.2012.03.008.

[18]

Y. F. Huang, Economic order quantity under conditionally permissible delay in payments, European Journal of Operational Research, 176 (2007), 911-924. doi: 10.1016/j.ejor.2005.08.017.

[19]

Y. F. Huang, Optimal retailer's ordering policies in the EOQ model under trade credit financing, Journal of the Operational Research Society, 54 (2003), 1011-1015. doi: 10.1057/palgrave.jors.2601588.

[20]

G. C. Mahata, An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain, Expert Systems with Applications, 39 (2012), 3537-3550. doi: 10.1016/j.eswa.2011.09.044.

[21]

G. C. Mahata, Retailer's optimal credit period and cycle time in a supply chain for deteriorating items with up-stream and down-stream trade credits, Journal of Industrial Engineering International, 11 (2015), 353-366. doi: 10.1007/s40092-015-0106-x.

[22]

G. C. Mahata and S. K. De, Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, International Journal of Management Science and Engineering Management, 12 (2017), 21-32. doi: 10.1080/17509653.2015.1109482.

[23]

P. Mahata and G. C. Mahata, Economic production quantity model with trade credit financing and price-discount offer for non-decreasing time varying demand pattern, International Journal of Procurement Management, 7 (2014), 563-581. doi: 10.1504/IJPM.2014.064619.

[24]

M. K. Maiti, A fuzzy genetic algorithm with varying population size to solve an inventory model with credit-linked promotional demand in an imprecise planning horizon, European Journal of Operational Research, 213 (2011), 96-106. doi: 10.1016/j.ejor.2011.02.014.

[25]

J. MinY. W. Zhou and J. Zhao, An inventory model for deteriorating items under stock-dependent demand and two-level trade credit, Applied Mathematical Modelling, 34 (2010), 3273-3285. doi: 10.1016/j.apm.2010.02.019.

[26]

L. Y. OuyangJ. T. TengS. K. Goyal and C. T. Yang, An economic order quantity model for deteriorating items with partially permissible delay in payments to order quantity, European Journal of Operational Research, 194 (2009), 418-431. doi: 10.1016/j.ejor.2007.12.018.

[27]

G. C. Philip, A generalized EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 6 (1974), 159-162. doi: 10.1080/05695557408974948.

[28]

P. PramanikM. K. Maiti and M. Maiti, A supply chain with variable demand under three level trade credit policy, Computers & Industrial Engineering, 106 (2017), 205-221. doi: 10.1016/j.cie.2017.02.007.

[29]

P. PramanikM. K. Maiti and M. Maiti, An appropriate business strategy for a sale item, OPSEARCH, 55 (2018), 85-106. doi: 10.1007/s12597-017-0310-0.

[30]

P. PramanikM. K. Maiti and M. Maiti, Three level partial trade credit with promotional cost sharing, Applied Soft Computing, 58 (2017), 553-575. doi: 10.1016/j.asoc.2017.04.013.

[31]

B. Sarkar and S. Sarkar, Variable deterioration and demand-An inventory model, Economic Modelling, 31 (2013), 548-556. doi: 10.1016/j.econmod.2012.11.045.

[32]

D. SeifertR. W. Seifert and M. Protopappa-Sieke, A review of trade credit literature: opportunity for research in operations, European Journal of Operational Research, 231 (2013), 245-256. doi: 10.1016/j.ejor.2013.03.016.

[33]

B. K. SettS. SarkarB. Sarkar and W. Y. Yun, Optimal replenishment policy with variable deterioration for fixed-lifetime products, Scientia Iranica, 23 (2016), 2318-2329. doi: 10.24200/sci.2016.3959.

[34]

T. Singh and H. Pattanayak, An EOQ model for deteriorating items with linear demand, variable deterioration and partial backlogging, Journal of Service Science and Management, 6 (2013), 186-190. doi: 10.4236/jssm.2013.62019.

[35]

S. TayalS. R. Singh and R. Sharma, Multi Item Inventory Model for Deteriorating Items with Expiration Date and Allowable Shortages, Indian Journal of Science and Technology, 7 (2014), 463-471.

[36]

J. T. Teng, Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad customers, International Journal of Production Economics, 119 (2009), 415-423. doi: 10.1016/j.ijpe.2009.04.004.

[37]

J. T. TengH. J. ChangC. Y. Dye and C. H. Hung, An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operation Research Letters, 30 (2002), 387-393. doi: 10.1016/S0167-6377(02)00150-5.

[38]

J. T. TengM. S. ChernH. L. Yang and Y. J. Wang, Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand, Operation Research Letters, 24 (1999), 65-72. doi: 10.1016/S0167-6377(98)00042-X.

[39]

J. T. Teng and S. K. Goyal, Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits, Journal of the Operational Research Society, 58 (2007), 1252-1255. doi: 10.1057/palgrave.jors.2602404.

[40]

Y. C. Tsao, Managing multi-echelon multi-item channels with trade allowances under credit period, International Journal Production Economics, 127 (2010), 226-237. doi: 10.1016/j.ijpe.2009.08.010.

Figure 1.  Pictorial representation of situation 1.1
Figure 2.  Interest earn and paid situations for the sold units
Figure 3.  Interest paid situation due to deteriorated units
Figure 4.  Pictorial representation of situation 1.2
Figure 5.  Interest earn and paid situations for the sold units
Figure 6.  Interest paid situation due to deteriorated units
Figure 7.  Pictorial representation of situation 1.3
Figure 8.  Interest earn and paid situations for the sold units
Figure 9.  Interest paid situation due to deteriorated units
Figure 10.  Pictorial representation of situation 2.1
Figure 11.  Interest earn and paid situations for the sold units
Figure 12.  Interest paid situation due to deteriorated units
Figure 13.  Pictorial representation of situation 2.2
Figure 14.  Interest earn and paid situations for the sold units
Figure 15.  Interest paid situation due to deteriorated units
Table 1.  Innovation of this paper related to the exiting literature
Article Deteriorating item Level of trade credit Pattern of trade credit Deterioration rate Item(s) has expiration time Interest paid for deteriorated units
[8,11,15,37,38] $\surd$ $\times$ NA Constant $\times$ NA
[35] $\surd$ $\times$ NA Constant $\surd$ NA
[1] $\surd$ Supplier-Retailer Full credit Constant $\times$ $\times$
[2,14,26] $\surd$ Supplier-Retailer Ordered quantity based full/ partial credit Constant $\times$ $\times$
[3,6,13,21,25] $\surd$ Supplier-Retailer Full credit Constant $\times$ $\times$
Retailer-Customers Full credit
[20] $\surd$ Supplier-Retailer Full credit Constant $\times$ $\times$
Retailer-Customers Partial credit
[7,27,34] $\surd$ $\times$ NA Time dependent $\times$ NA
[5] $\surd$ Supplier-Retailer Order quantity based full credit Time dependent $\times$ $\times$
[22] $\surd$ Supplier-Retailer Full credit Time dependent $\surd$ $\times$
Retailer-Customers Partial credit
This Paper $\surd$ Supplier-Retailer Full credit Time dependent $\surd$ $\surd$
Retailer-Customers Partial credit
NA stands for ‘Not Applicable’.
Article Deteriorating item Level of trade credit Pattern of trade credit Deterioration rate Item(s) has expiration time Interest paid for deteriorated units
[8,11,15,37,38] $\surd$ $\times$ NA Constant $\times$ NA
[35] $\surd$ $\times$ NA Constant $\surd$ NA
[1] $\surd$ Supplier-Retailer Full credit Constant $\times$ $\times$
[2,14,26] $\surd$ Supplier-Retailer Ordered quantity based full/ partial credit Constant $\times$ $\times$
[3,6,13,21,25] $\surd$ Supplier-Retailer Full credit Constant $\times$ $\times$
Retailer-Customers Full credit
[20] $\surd$ Supplier-Retailer Full credit Constant $\times$ $\times$
Retailer-Customers Partial credit
[7,27,34] $\surd$ $\times$ NA Time dependent $\times$ NA
[5] $\surd$ Supplier-Retailer Order quantity based full credit Time dependent $\times$ $\times$
[22] $\surd$ Supplier-Retailer Full credit Time dependent $\surd$ $\times$
Retailer-Customers Partial credit
This Paper $\surd$ Supplier-Retailer Full credit Time dependent $\surd$ $\surd$
Retailer-Customers Partial credit
NA stands for ‘Not Applicable’.
Table 2.  Results of the model
Example Appropriate for $T^*$ $Q^*$ $TP^*(T^*)$
5.1 Situation 1.1 $T_{11}=0.1346$ 319.396 $TP_{11}(T_{11})=9824.71$
5.2 Situation 1.2 $T_{12}=0.1404$ 291.159 $TP_{12}(T_{12})=8643.00$
5.3 Situation 1.3 $T_{13}=0.1365$ 296.892 $TP_{13}(T_{13})=8942.34$
5.4 Situation 2.1 $T_{21}=0.1382$ 273.311 $TP_{21}(T_{21})=8087.69$
5.5 Situation 2.2 $T_{22}=0.1374$ 256.299 $TP_{22}(T_{22})=7716.36$
Example Appropriate for $T^*$ $Q^*$ $TP^*(T^*)$
5.1 Situation 1.1 $T_{11}=0.1346$ 319.396 $TP_{11}(T_{11})=9824.71$
5.2 Situation 1.2 $T_{12}=0.1404$ 291.159 $TP_{12}(T_{12})=8643.00$
5.3 Situation 1.3 $T_{13}=0.1365$ 296.892 $TP_{13}(T_{13})=8942.34$
5.4 Situation 2.1 $T_{21}=0.1382$ 273.311 $TP_{21}(T_{21})=8087.69$
5.5 Situation 2.2 $T_{22}=0.1374$ 256.299 $TP_{22}(T_{22})=7716.36$
Table 3.  Sensitivity Analysis
Parameter $T^*$ $Q^*$ $TP^*(T^*)$
2000 0.1404 291.159 8643.00
D 2500 0.1259 325.220 10991.49
3000 0.1151 355.645 13355.68
0.16 0.1404 291.159 8643.00
M 0.20 0.1395 289.318 8664.18
0.25 0.1392 288.595 8694.01
50 0.1000 205.167 9058.72
A 100 0.1404 291.159 8643.00
200 0.1958 412.145 8048.82
1 0.1404 291.159 8643.00
m 2 0.1569 322.272 8780.27
3 0.1670 341.100 8853.89
0.02 0.1409 292.159 8637.78
$I_{e}$ 0.03 0.1404 291.159 8643.00
0.04 0.1398 289.933 8648.24
0.05 0.1404 291.159 8643.00
$\alpha$ 0.10 0.1402 290.779 8645.21
0.20 0.1403 290.972 8649.619
0.04 0.1396 289.443 8662.98
N 0.08 0.1404 291.159 8643.00
0.12 0.1407 291.855 8626.29
1 0.1894 398.066 16983.74
c 3 0.1595 332.370 12795.03
5 0.1404 291.159 8643.00
1 0.1569 326.853 8795.10
h 2 0.1404 291.159 8643.00
4 0.1189 244.171 8380.12
0.02 0.1410 292.351 8644.47
$I_{c}$ 0.03 0.1404 291.159 8643.00
0.04 0.1400 290.248 8641.556
10 0.1404 291.159 8643.00
s 15 0.1396 289.442 18650.87
20 0.1390 288.053 28658.77
Parameter $T^*$ $Q^*$ $TP^*(T^*)$
2000 0.1404 291.159 8643.00
D 2500 0.1259 325.220 10991.49
3000 0.1151 355.645 13355.68
0.16 0.1404 291.159 8643.00
M 0.20 0.1395 289.318 8664.18
0.25 0.1392 288.595 8694.01
50 0.1000 205.167 9058.72
A 100 0.1404 291.159 8643.00
200 0.1958 412.145 8048.82
1 0.1404 291.159 8643.00
m 2 0.1569 322.272 8780.27
3 0.1670 341.100 8853.89
0.02 0.1409 292.159 8637.78
$I_{e}$ 0.03 0.1404 291.159 8643.00
0.04 0.1398 289.933 8648.24
0.05 0.1404 291.159 8643.00
$\alpha$ 0.10 0.1402 290.779 8645.21
0.20 0.1403 290.972 8649.619
0.04 0.1396 289.443 8662.98
N 0.08 0.1404 291.159 8643.00
0.12 0.1407 291.855 8626.29
1 0.1894 398.066 16983.74
c 3 0.1595 332.370 12795.03
5 0.1404 291.159 8643.00
1 0.1569 326.853 8795.10
h 2 0.1404 291.159 8643.00
4 0.1189 244.171 8380.12
0.02 0.1410 292.351 8644.47
$I_{c}$ 0.03 0.1404 291.159 8643.00
0.04 0.1400 290.248 8641.556
10 0.1404 291.159 8643.00
s 15 0.1396 289.442 18650.87
20 0.1390 288.053 28658.77
[1]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[2]

Pin-Shou Ting. The EPQ model with deteriorating items under two levels of trade credit in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (2) : 479-492. doi: 10.3934/jimo.2015.11.479

[3]

Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012

[4]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010

[5]

Sankar Kumar Roy, Magfura Pervin, Gerhard Wilhelm Weber. A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018167

[6]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[7]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-29. doi: 10.3934/jimo.2018098

[8]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[9]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[10]

Biswajit Sarkar, Arunava Majumder, Mitali Sarkar, Bikash Koli Dey, Gargi Roy. Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1085-1104. doi: 10.3934/jimo.2016063

[11]

Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-21. doi: 10.3934/jimo.2018039

[12]

Hua-Ping Wu, Min Huang, W. H. Ip, Qun-Lin Fan. Algorithms for single-machine scheduling problem with deterioration depending on a novel model. Journal of Industrial & Management Optimization, 2017, 13 (2) : 681-695. doi: 10.3934/jimo.2016040

[13]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[14]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[15]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[16]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[17]

Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial & Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i

[18]

Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339

[19]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[20]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-27. doi: 10.3934/jimo.2018151

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (24)
  • HTML views (409)
  • Cited by (0)

[Back to Top]