• Previous Article
    Risk measure optimization: Perceived risk and overconfidence of structured product investors
  • JIMO Home
  • This Issue
  • Next Article
    Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase
doi: 10.3934/jimo.2018095

Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization

a. 

Center for Food Security and Strategic Studies, Nanjing University of Finance and Economics, 128 Tielubeijie St., Nanjing 210003, China

b. 

Collaborative Innovation Center of Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, 128 Tielubeijie St., Nanjing 210003, China

c. 

School of Mechanical Engineering, Southeast University, Nanjing 211189, China

* Corresponding author: Xia Zhao

Received  July 2017 Revised  January 2018 Published  July 2018

Fund Project: This work is supported by the Programs of National Natural Science Foundation of China(No.51575108 and No.71403114), China Special Fund for Grain-scientific Research in the Public Interest(No.201513004), the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD) and Qinglan Project

Motivated by observing the importance of logistics cost in the cost structure of some products, this paper aims at multi-objective optimization of integrating supply chain network design with the selection of transportation modes (TMs) for a single-product four-echelon supply chain composed of suppliers, production plants, distribution centers (DCs) and customer zones. The key design decisions are the number, capacity and location of plants and DCs, the flow of products through the network, and the selection of TMs for each flow path. A bi-objective mixed integer linear programming model is first formulated. The two incompatible objectives are minimizing the total cost and maximizing the demand fill rate. The model is validated by applying to the case of the design of fresh apple supply chain. Then, a new metaheuristic, called multi-objective modified particle swarm optimization (MMPSO), is presented to find non-dominated solutions. A new modified binary PSO for updating binary variables along with the adaptive mutation is incorporated into the MMPSO. The MMPSO is compared with a multi-objective basic PSO (MBPSO) and the NSGA-Ⅱ against three small cases and six randomly generated medium and large size problems. The comparative results indicate that the MMPSO is better than the NSGA-Ⅱ and the MBPSO with respect to solution quality and computation efficiency for the problem.

Citation: Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018095
References:
[1]

F. AltiparmakM. GenL. Lin and T. Paksoy, A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineering, 51 (2006), 196-215. doi: 10.1016/j.cie.2006.07.011.

[2]

S. H. Amin and G. Zhang, A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return, Applied Mathematical Modelling, 37 (2013), 4165-4176. doi: 10.1016/j.apm.2012.09.039.

[3]

R. K. Apaiah and E. M. T. Hendrix, Design of a supply chain network for pea-based novel protein foods, Journal of Food Engineering, 70 (2005), 383-391. doi: 10.1016/j.jfoodeng.2004.02.043.

[4]

M. BachlausM. PandeyC. MahajanR. Shankar and M. Tiwari, Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-particle swarm optimization approach, Journal of Intelligent Manufacturing, 19 (2008), 747-761. doi: 10.1007/s10845-008-0125-1.

[5]

A. BanasikA. KanellopoulosG. ClaassenJ. M. Bloemhof-Ruwaard and J. G. van der Vorst, Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain, International Journal of Production Economics, 183 (2017), 409-420. doi: 10.1016/j.ijpe.2016.08.012.

[6]

X. CaiJ. ChenY. XiaoX. Xu and G. Yu, Fresh-product supply chain management with logistics outsourcing, Omega, 41 (2013), 752-765. doi: 10.1016/j.omega.2012.09.004.

[7]

F. T. ChanA. Jha and M. K. Tiwari, Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-Ⅱ with heuristics algorithm, Applied Soft Computing, 38 (2016), 978-987. doi: 10.1016/j.asoc.2015.10.067.

[8]

N. Chibeles-MartinsT. Pinto-VarelaA. P. Barbosa-Póvoa and A. Q. Novais, A multi-objective meta-heuristic approach for the design and planning of green supply chains-MBSA, Expert Systems with Applications, 47 (2016), 71-84. doi: 10.1016/j.eswa.2015.10.036.

[9]

C. A. C. CoelloG. T. Pulido and M. S. Lechuga, Handling multiple objectives with particle swarm optimization, Evolutionary Computation, IEEE Transactions on, 8 (2004), 256-279. doi: 10.1109/TEVC.2004.826067.

[10]

C. A. Coello and M. S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on, IEEE, (2002), 1051–1056. doi: 10.1109/CEC.2002.1004388.

[11]

J. F. CordeauF. Pasin and M. Solomon, An integrated model for logistics network design, Annals of Operations Research, 144 (2006), 59-82. doi: 10.1007/s10479-006-0001-3.

[12]

K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, 2001.

[13]

K. DebA. PratapS. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, Evolutionary Computation, IEEE Transactions on, 6 (2002), 182-197. doi: 10.1109/4235.996017.

[14]

J. DouX. Wang and L. Wang, Machining fixture layout optimisation under dynamic conditions based on evolutionary techniques, International Journal of Production Research, 50 (2012), 4294-4315. doi: 10.1080/00207543.2011.618470.

[15]

J. J. Durillo, J. García-Nieto, A. J. Nebro, C. A. C. Coello, F. Luna and E. Alba, Multiobjective particle swarm optimizers: An experimental comparison, Evolutionary MultiCriterion Optimization, Springer, (2009), 495–509. doi: 10.1007/978-3-642-01020-0_39.

[16]

M. EskandarpourP DejaxJ. Miemczyk and O. Péton, Sustainable supply chain network design: An optimization-oriented review, Omega, 54 (2015), 11-32.

[17]

B. FahimniaR. Z. FarahaniR. Marian and L. Luong, A review and critique on integrated production-distribution planning models and techniques, Journal of Manufacturing Systems, 32 (2013), 1-19. doi: 10.1016/j.jmsy.2012.07.005.

[18]

H. FelfelO. Ayadi and F. Masmoudi, A decision-making approach for a multi-objective multisite supply network planning problem, International Journal of Computer Integrated Manufacturing, 29 (2016), 754-767. doi: 10.1080/0951192X.2015.1107916.

[19]

K. GovindanA. Jafarian and V. Nourbakhsh, Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic, Computers & Operations Research, 62 (2015), 112-130. doi: 10.1016/j.cor.2014.12.014.

[20]

G. GuillénF. MeleM. BagajewiczA. Espuna and L. Puigjaner, Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.

[21]

A. Haddadsisakht and S. M. Ryan, Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax, International Journal of Production Economics, 195 (2018), 118-131. doi: 10.1016/j.ijpe.2017.09.009.

[22]

A. HafezalkotobK. Khalili-Damghani and S. S. Ghashami, A Three-Echelon Multi-Objective Multi-Period Multi-Product Supply Chain Network Design Problem: A Goal Programming Approach, Journal of Optimization in Industrial Engineering, 10 (2016), 67-78.

[23]

M. JinN. A. Granda-Marulanda and I. Down, The impact of carbon policies on supply chain design and logistics of a major retailer, Journal of Cleaner Production, 85 (2014), 453-461. doi: 10.1016/j.jclepro.2013.08.042.

[24]

F. JolaiJ. Razmi and N. K. M. Rostami, A fuzzy goal programming and meta heuristic algorithms for solving integrated production: Distribution planning problem, Central European Journal of Operations Research, 19 (2011), 547-569. doi: 10.1007/s10100-010-0144-9.

[25]

R. S. KadadevaramathJ. C. ChenB. Latha Shankar and K. Rameshkumar, Application of particle swarm intelligence algorithms in supply chain network architecture optimization, Expert Systems with Applications, 39 (2012), 10160-10176. doi: 10.1016/j.eswa.2012.02.116.

[26]

M. KadzińskiT. TervonenM. K. Tomczyk and R. Dekker, Evaluation of multi-objective optimization approaches for solving green supply chain design problems, Omega, 68 (2017), 168-184.

[27]

J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, IEEE Press, 5 (1997), 4104-4108. doi: 10.1109/ICSMC.1997.637339.

[28]

J. Kennedy and R. Eberhart, Particle swarm optimization, Piscataway, NJ: IEEE Service Center, 4 (1995), 1942-1948. doi: 10.1109/ICNN.1995.488968.

[29]

K. Khalili-DamghaniM. Tavana and M. Amirkhan, A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions, The International Journal of Advanced Manufacturing Technology, 73 (2014), 1567-1595. doi: 10.1007/s00170-014-5891-7.

[30]

S. LeeS. SoakS. OhW. Pedrycz and M. Jeon, Modified binary particle swarm optimization, Progress in Natural Science, 18 (2008), 1161-1166. doi: 10.1016/j.pnsc.2008.03.018.

[31]

M. MohammadzadehA. A. Khamseh and M. Mohammadi, A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels, Journal of Industrial & Management Optimization, 13 (2017), 1041-1064. doi: 10.3934/jimo.2016061.

[32]

L. A. Moncayo-Martínez and D. Z. Zhang, Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design, International Journal of Production Economics, 131 (2011), 407-420.

[33]

K. P. NurjanniM. S. Carvalho and L. Costa, Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model, International Journal of Production Economics, 183 (2017), 421-432. doi: 10.1016/j.ijpe.2016.08.028.

[34]

E. Olivares-BenitezJ. L. González-Velarde and R. Z. Ríos-Mercado, A supply chain design problem with facility location and bi-objective transportation choices, Top, 20 (2012), 729-753. doi: 10.1007/s11750-010-0162-8.

[35]

E. Olivares-BenitezR. Z. Rios-Mercado and J. L. Gonzalez-Velarde, A metaheuristic algorithm to solve the selection of transportation channels in supply chain design, International Journal of Production Economics, 145 (2013), 161-172. doi: 10.1016/j.ijpe.2013.01.017.

[36]

K. E. Parsopoulos and M. N. Vrahatis, Particle swarm optimization method in multiobjective problems, in Proceedings of the 2002 ACM symposium on Applied computing, ACM, (2002), 603–607. doi: 10.1145/508791.508907.

[37]

S. H. R. PasandidehS. T. A. Niaki and K. Asadi, Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-Ⅱ and NRGA, Information Sciences, 292 (2015), 57-74. doi: 10.1016/j.ins.2014.08.068.

[38]

M. M. Paydar and M. Saidi-Mehrabad, Revised multi-choice goal programming for integrated supply chain design and dynamic virtual cell formation with fuzzy parameters, International Journal of Computer Integrated Manufacturing, 28 (2015), 251-265. doi: 10.1080/0951192X.2013.874596.

[39]

M. S. Pishvaee and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446. doi: 10.1016/j.apm.2011.10.007.

[40]

A. PourroustaS. DehbariR. Tavakkoli-Moghaddam and M. S. Amalnik, A multi-objective particle swarm optimization for production-distribution planning in supply chain network, Management Science Letters, 2 (2012), 603-614. doi: 10.5267/j.msl.2011.11.012.

[41]

M. Reyes-sierra and C. A. Coello Coello, Multi-Objective particle swarm optimizers: A survey of the state-of-the-art, International Journal of Computational Intelligence Research, 2 (2006), 287-308.

[42]

H. Sadjady and H. Davoudpour, Two-echelon, multi-commodity supply chain network design with mode selection, lead-times and inventory costs, Computers & Operations Research, 39 (2012), 1345-1354. doi: 10.1016/j.cor.2011.08.003.

[43]

K. SarrafhaS. H. A. RahmatiS. T. A. Niaki and A. Zaretalab, A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA, Computers & Operations Research, 54 (2015), 35-51. doi: 10.1016/j.cor.2014.08.010.

[44]

B. L. ShankarS. BasavarajappaJ. C. Chen and R. S. Kadadevaramath, Location and allocation decisions for multi-echelon supply chain network multi-objective evolutionary approach, Expert Systems with Applications, 40 (2013), 551-562. doi: 10.1016/j.eswa.2012.07.065.

[45]

C. Shankhar and P. S. S. Prasad, Cost optimisation of supply chain networks using particle swarm optimisation, International Journal of Business Performance and Supply Chain Modelling, 2 (2010), 112-124. doi: 10.1504/IJBPSCM.2010.036164.

[46]

Z. J. M. Shen, Integrated supply chain design models: a survey and future research directions, Journal of Industrial & Management Optimization, 3 (2007), 1-27. doi: 10.3934/jimo.2007.3.1.

[47]

Y. Shi and R. Eberhart, A modified particle swarm optimizer, in Piscataway, NJ: IEEE Press, (1998), 69–73. doi: 10.1109/ICEC.1998.699146.

[48]

S. P. Venkatesan and S. Kumanan, A Multi-Objective Discrete Particle Swarm Optimisation Algorithm for supply chain network design, International Journal of Logistics Systems and Management, 11 (2012), 375-406. doi: 10.1504/IJLSM.2012.045919.

[49]

G. Q. YangY. K. Liu and K. Yang, Multi-objective biogeography-based optimization for supply chain network design under uncertainty, Computers & Industrial Engineering, 85 (2015), 145-156. doi: 10.1016/j.cie.2015.03.008.

[50]

M. J. Yao and H. W. Hsu, A new spanning tree-based genetic algorithm for the design of multi-stage supply chain networks with nonlinear transportation costs, Optimization and Engineering, 10 (2009), 219-237. doi: 10.1007/s11081-008-9059-x.

[51]

A. ZhouB. Y. QuH. LiS. Z. ZhaoP. N. Suganthan and Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation, 1 (2011), 32-49. doi: 10.1016/j.swevo.2011.03.001.

show all references

References:
[1]

F. AltiparmakM. GenL. Lin and T. Paksoy, A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineering, 51 (2006), 196-215. doi: 10.1016/j.cie.2006.07.011.

[2]

S. H. Amin and G. Zhang, A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return, Applied Mathematical Modelling, 37 (2013), 4165-4176. doi: 10.1016/j.apm.2012.09.039.

[3]

R. K. Apaiah and E. M. T. Hendrix, Design of a supply chain network for pea-based novel protein foods, Journal of Food Engineering, 70 (2005), 383-391. doi: 10.1016/j.jfoodeng.2004.02.043.

[4]

M. BachlausM. PandeyC. MahajanR. Shankar and M. Tiwari, Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-particle swarm optimization approach, Journal of Intelligent Manufacturing, 19 (2008), 747-761. doi: 10.1007/s10845-008-0125-1.

[5]

A. BanasikA. KanellopoulosG. ClaassenJ. M. Bloemhof-Ruwaard and J. G. van der Vorst, Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain, International Journal of Production Economics, 183 (2017), 409-420. doi: 10.1016/j.ijpe.2016.08.012.

[6]

X. CaiJ. ChenY. XiaoX. Xu and G. Yu, Fresh-product supply chain management with logistics outsourcing, Omega, 41 (2013), 752-765. doi: 10.1016/j.omega.2012.09.004.

[7]

F. T. ChanA. Jha and M. K. Tiwari, Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-Ⅱ with heuristics algorithm, Applied Soft Computing, 38 (2016), 978-987. doi: 10.1016/j.asoc.2015.10.067.

[8]

N. Chibeles-MartinsT. Pinto-VarelaA. P. Barbosa-Póvoa and A. Q. Novais, A multi-objective meta-heuristic approach for the design and planning of green supply chains-MBSA, Expert Systems with Applications, 47 (2016), 71-84. doi: 10.1016/j.eswa.2015.10.036.

[9]

C. A. C. CoelloG. T. Pulido and M. S. Lechuga, Handling multiple objectives with particle swarm optimization, Evolutionary Computation, IEEE Transactions on, 8 (2004), 256-279. doi: 10.1109/TEVC.2004.826067.

[10]

C. A. Coello and M. S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on, IEEE, (2002), 1051–1056. doi: 10.1109/CEC.2002.1004388.

[11]

J. F. CordeauF. Pasin and M. Solomon, An integrated model for logistics network design, Annals of Operations Research, 144 (2006), 59-82. doi: 10.1007/s10479-006-0001-3.

[12]

K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, 2001.

[13]

K. DebA. PratapS. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, Evolutionary Computation, IEEE Transactions on, 6 (2002), 182-197. doi: 10.1109/4235.996017.

[14]

J. DouX. Wang and L. Wang, Machining fixture layout optimisation under dynamic conditions based on evolutionary techniques, International Journal of Production Research, 50 (2012), 4294-4315. doi: 10.1080/00207543.2011.618470.

[15]

J. J. Durillo, J. García-Nieto, A. J. Nebro, C. A. C. Coello, F. Luna and E. Alba, Multiobjective particle swarm optimizers: An experimental comparison, Evolutionary MultiCriterion Optimization, Springer, (2009), 495–509. doi: 10.1007/978-3-642-01020-0_39.

[16]

M. EskandarpourP DejaxJ. Miemczyk and O. Péton, Sustainable supply chain network design: An optimization-oriented review, Omega, 54 (2015), 11-32.

[17]

B. FahimniaR. Z. FarahaniR. Marian and L. Luong, A review and critique on integrated production-distribution planning models and techniques, Journal of Manufacturing Systems, 32 (2013), 1-19. doi: 10.1016/j.jmsy.2012.07.005.

[18]

H. FelfelO. Ayadi and F. Masmoudi, A decision-making approach for a multi-objective multisite supply network planning problem, International Journal of Computer Integrated Manufacturing, 29 (2016), 754-767. doi: 10.1080/0951192X.2015.1107916.

[19]

K. GovindanA. Jafarian and V. Nourbakhsh, Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic, Computers & Operations Research, 62 (2015), 112-130. doi: 10.1016/j.cor.2014.12.014.

[20]

G. GuillénF. MeleM. BagajewiczA. Espuna and L. Puigjaner, Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.

[21]

A. Haddadsisakht and S. M. Ryan, Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax, International Journal of Production Economics, 195 (2018), 118-131. doi: 10.1016/j.ijpe.2017.09.009.

[22]

A. HafezalkotobK. Khalili-Damghani and S. S. Ghashami, A Three-Echelon Multi-Objective Multi-Period Multi-Product Supply Chain Network Design Problem: A Goal Programming Approach, Journal of Optimization in Industrial Engineering, 10 (2016), 67-78.

[23]

M. JinN. A. Granda-Marulanda and I. Down, The impact of carbon policies on supply chain design and logistics of a major retailer, Journal of Cleaner Production, 85 (2014), 453-461. doi: 10.1016/j.jclepro.2013.08.042.

[24]

F. JolaiJ. Razmi and N. K. M. Rostami, A fuzzy goal programming and meta heuristic algorithms for solving integrated production: Distribution planning problem, Central European Journal of Operations Research, 19 (2011), 547-569. doi: 10.1007/s10100-010-0144-9.

[25]

R. S. KadadevaramathJ. C. ChenB. Latha Shankar and K. Rameshkumar, Application of particle swarm intelligence algorithms in supply chain network architecture optimization, Expert Systems with Applications, 39 (2012), 10160-10176. doi: 10.1016/j.eswa.2012.02.116.

[26]

M. KadzińskiT. TervonenM. K. Tomczyk and R. Dekker, Evaluation of multi-objective optimization approaches for solving green supply chain design problems, Omega, 68 (2017), 168-184.

[27]

J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, IEEE Press, 5 (1997), 4104-4108. doi: 10.1109/ICSMC.1997.637339.

[28]

J. Kennedy and R. Eberhart, Particle swarm optimization, Piscataway, NJ: IEEE Service Center, 4 (1995), 1942-1948. doi: 10.1109/ICNN.1995.488968.

[29]

K. Khalili-DamghaniM. Tavana and M. Amirkhan, A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions, The International Journal of Advanced Manufacturing Technology, 73 (2014), 1567-1595. doi: 10.1007/s00170-014-5891-7.

[30]

S. LeeS. SoakS. OhW. Pedrycz and M. Jeon, Modified binary particle swarm optimization, Progress in Natural Science, 18 (2008), 1161-1166. doi: 10.1016/j.pnsc.2008.03.018.

[31]

M. MohammadzadehA. A. Khamseh and M. Mohammadi, A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels, Journal of Industrial & Management Optimization, 13 (2017), 1041-1064. doi: 10.3934/jimo.2016061.

[32]

L. A. Moncayo-Martínez and D. Z. Zhang, Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design, International Journal of Production Economics, 131 (2011), 407-420.

[33]

K. P. NurjanniM. S. Carvalho and L. Costa, Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model, International Journal of Production Economics, 183 (2017), 421-432. doi: 10.1016/j.ijpe.2016.08.028.

[34]

E. Olivares-BenitezJ. L. González-Velarde and R. Z. Ríos-Mercado, A supply chain design problem with facility location and bi-objective transportation choices, Top, 20 (2012), 729-753. doi: 10.1007/s11750-010-0162-8.

[35]

E. Olivares-BenitezR. Z. Rios-Mercado and J. L. Gonzalez-Velarde, A metaheuristic algorithm to solve the selection of transportation channels in supply chain design, International Journal of Production Economics, 145 (2013), 161-172. doi: 10.1016/j.ijpe.2013.01.017.

[36]

K. E. Parsopoulos and M. N. Vrahatis, Particle swarm optimization method in multiobjective problems, in Proceedings of the 2002 ACM symposium on Applied computing, ACM, (2002), 603–607. doi: 10.1145/508791.508907.

[37]

S. H. R. PasandidehS. T. A. Niaki and K. Asadi, Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-Ⅱ and NRGA, Information Sciences, 292 (2015), 57-74. doi: 10.1016/j.ins.2014.08.068.

[38]

M. M. Paydar and M. Saidi-Mehrabad, Revised multi-choice goal programming for integrated supply chain design and dynamic virtual cell formation with fuzzy parameters, International Journal of Computer Integrated Manufacturing, 28 (2015), 251-265. doi: 10.1080/0951192X.2013.874596.

[39]

M. S. Pishvaee and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming, Applied Mathematical Modelling, 36 (2012), 3433-3446. doi: 10.1016/j.apm.2011.10.007.

[40]

A. PourroustaS. DehbariR. Tavakkoli-Moghaddam and M. S. Amalnik, A multi-objective particle swarm optimization for production-distribution planning in supply chain network, Management Science Letters, 2 (2012), 603-614. doi: 10.5267/j.msl.2011.11.012.

[41]

M. Reyes-sierra and C. A. Coello Coello, Multi-Objective particle swarm optimizers: A survey of the state-of-the-art, International Journal of Computational Intelligence Research, 2 (2006), 287-308.

[42]

H. Sadjady and H. Davoudpour, Two-echelon, multi-commodity supply chain network design with mode selection, lead-times and inventory costs, Computers & Operations Research, 39 (2012), 1345-1354. doi: 10.1016/j.cor.2011.08.003.

[43]

K. SarrafhaS. H. A. RahmatiS. T. A. Niaki and A. Zaretalab, A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA, Computers & Operations Research, 54 (2015), 35-51. doi: 10.1016/j.cor.2014.08.010.

[44]

B. L. ShankarS. BasavarajappaJ. C. Chen and R. S. Kadadevaramath, Location and allocation decisions for multi-echelon supply chain network multi-objective evolutionary approach, Expert Systems with Applications, 40 (2013), 551-562. doi: 10.1016/j.eswa.2012.07.065.

[45]

C. Shankhar and P. S. S. Prasad, Cost optimisation of supply chain networks using particle swarm optimisation, International Journal of Business Performance and Supply Chain Modelling, 2 (2010), 112-124. doi: 10.1504/IJBPSCM.2010.036164.

[46]

Z. J. M. Shen, Integrated supply chain design models: a survey and future research directions, Journal of Industrial & Management Optimization, 3 (2007), 1-27. doi: 10.3934/jimo.2007.3.1.

[47]

Y. Shi and R. Eberhart, A modified particle swarm optimizer, in Piscataway, NJ: IEEE Press, (1998), 69–73. doi: 10.1109/ICEC.1998.699146.

[48]

S. P. Venkatesan and S. Kumanan, A Multi-Objective Discrete Particle Swarm Optimisation Algorithm for supply chain network design, International Journal of Logistics Systems and Management, 11 (2012), 375-406. doi: 10.1504/IJLSM.2012.045919.

[49]

G. Q. YangY. K. Liu and K. Yang, Multi-objective biogeography-based optimization for supply chain network design under uncertainty, Computers & Industrial Engineering, 85 (2015), 145-156. doi: 10.1016/j.cie.2015.03.008.

[50]

M. J. Yao and H. W. Hsu, A new spanning tree-based genetic algorithm for the design of multi-stage supply chain networks with nonlinear transportation costs, Optimization and Engineering, 10 (2009), 219-237. doi: 10.1007/s11081-008-9059-x.

[51]

A. ZhouB. Y. QuH. LiS. Z. ZhaoP. N. Suganthan and Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation, 1 (2011), 32-49. doi: 10.1016/j.swevo.2011.03.001.

Figure 1.  The studied single product four-echelon supply chain network
Figure 2.  The solution representation of binary and continuous variables by a particle
Figure 3.  Solution procedure of the MILP model by PSO and LINGO
Figure 8.  Location map of an apple supply chain in Shanxi Province of China
Figure 4.  Solution report of case 1 by LINGO given DFR as one
Figure 5.  Non-dominated solutions of case 1 obtained by three algorithms
Figure 6.  Non-dominated solutions of problem 4 obtained by three algorithms
Figure 7.  Average and best values of ERs and ∆ versus nine problems
Table 1.  Key decision variables of five typical non-dominated solutions for case 1
# Plant locations DC locations
YA TC BO XY WN XA BJ SH SZ WH ZZ CD XA
1 1 0 0 1 1 0 0 0 0 1 1 0 1
2 1 1 0 0 1 0 0 0 0 1 1 0 1
3 1 0 0 1 0 1 0 0 0 1 1 0 1
4 1 0 0 1 1 1 0 0 0 1 1 1 1
5 1 1 1 1 1 0 0 0 0 1 1 1 1
Demand BJ SH SZ WH CS ZZ CD CQ XA
1 24000 32000 16000 32000 40000 24000 32000 24000 40000
2 24000 32000 16287.6 33855.8 41188 27999.6 36140.1 24000 40000
3 24000 32000 19765.1 35230.7 48442 25584.1 33739.3 27232.1 50000
4 30000 32687.3 20000 40000 46619.4 30000 39736.1 24000 50000
5 30000 40000 20000 40000 50000 30000 40000 30000 50000
TM Supplier-to-Plant Plant-to-DC DC-to-CZ
1 truck rail rail+truck
2 truck rail rail+truck
3 truck rail+truck rail+truck
4 truck rail+truck rail+truck
5 truck rail+truck rail+truck
# 1 2 3 4 5
Cost/1E8 4.7783 5.0033 5.3648 5.6808 5.9819
DFR 0.8 0.835 0.897 0.949 1.0
# Plant locations DC locations
YA TC BO XY WN XA BJ SH SZ WH ZZ CD XA
1 1 0 0 1 1 0 0 0 0 1 1 0 1
2 1 1 0 0 1 0 0 0 0 1 1 0 1
3 1 0 0 1 0 1 0 0 0 1 1 0 1
4 1 0 0 1 1 1 0 0 0 1 1 1 1
5 1 1 1 1 1 0 0 0 0 1 1 1 1
Demand BJ SH SZ WH CS ZZ CD CQ XA
1 24000 32000 16000 32000 40000 24000 32000 24000 40000
2 24000 32000 16287.6 33855.8 41188 27999.6 36140.1 24000 40000
3 24000 32000 19765.1 35230.7 48442 25584.1 33739.3 27232.1 50000
4 30000 32687.3 20000 40000 46619.4 30000 39736.1 24000 50000
5 30000 40000 20000 40000 50000 30000 40000 30000 50000
TM Supplier-to-Plant Plant-to-DC DC-to-CZ
1 truck rail rail+truck
2 truck rail rail+truck
3 truck rail+truck rail+truck
4 truck rail+truck rail+truck
5 truck rail+truck rail+truck
# 1 2 3 4 5
Cost/1E8 4.7783 5.0033 5.3648 5.6808 5.9819
DFR 0.8 0.835 0.897 0.949 1.0
Table 6.  Expected maximal sale amounts of fresh apples for nine CZs(K tons)
CZs BJ SH SZ WH CS ZZ CD CQ XA
Apples 30 40 20 40 50 30 40 30 50
CZs BJ SH SZ WH CS ZZ CD CQ XA
Apples 30 40 20 40 50 30 40 30 50
Table 7.  Capacities and procumbent costs for five suppliers
Locations YA TC BO XY WN
Capacity (K tons) 120 60 60 160 100
cost (RMB/ton) 610 620 630 620 630
Locations YA TC BO XY WN
Capacity (K tons) 120 60 60 160 100
cost (RMB/ton) 610 620 630 620 630
Table 8.  Variable costs of producing fresh apples for potential plants (RMB/ton)
Sites YA TC BO XY WN XA
Cost 500 520 540 530 530 520
Sites YA TC BO XY WN XA
Cost 500 520 540 530 530 520
Table 9.  Variable costs of warehousing for nine sites (RMB/ton)
DCs BJ SH SZ WH CS ZZ CD CQ XA
Cost 420 430 440 410 400 400 400 400 400
DCs BJ SH SZ WH CS ZZ CD CQ XA
Cost 420 430 440 410 400 400 400 400 400
Table 10.  Unit transportation costs for supplier-to-plant (RMB/ton)
cost YA TC BO XY WN XA
YA 0 103.2 212.4 156 139.8 157.2
TC 103.2 0 135 53.4 48 53.4
BO 212.4 135 0 99.6 153 120
XY 156 53.4 99.6 0 53.4 21
WN 139.8 48 153 53.4 0 35.4
cost YA TC BO XY WN XA
YA 0 103.2 212.4 156 139.8 157.2
TC 103.2 0 135 53.4 48 53.4
BO 212.4 135 0 99.6 153 120
XY 156 53.4 99.6 0 53.4 21
WN 139.8 48 153 53.4 0 35.4
Table 11.  Unit transportation costs of truck and rail (RMB/ton)
cost BJ SH SZ WH CS ZZ CD CQ XA
YA 127.6 150.8 199.6 116.1 143.3 75.9 100.8 93.9 37.6
516 877.2 984.6 517.8 607.8 298.2 533.4 508.8 157.2
TC 110.2 133.4 182.2 98.7 125.9 58.5 83.4 78.5 20.2
588 866.4 899.4 467.4 529.2 300.6 444 406.2 53.4
BO 114.2 137.4 186.2 102.7 129.9 62.5 61.4 82.5 24.2
720.6 976.8 912.6 543 566.4 427.2 322.2 324 120
XY 102.9 126.1 174.9 91.5 118.6 51.3 72.6 67.8 12.9
636.6 879.6 866.4 454.8 503.4 327.6 393.6 352.2 21
WN 97 120.2 187.7 85.5 112.7 45.3 78.6 73.7 15.4
589.8 829.2 852 416.4 481.2 273.6 440.4 383.4 35.4
XA 101.2 124.4 173.2 90 116.9 49.5 74.4 69.5 11.2
624 858.6 852.6 435 486.6 308.4 405.6 355.2 0
BJ 0 120.3 189.1 102.7 130.7 62.9 164.4 167 101.2
0 670.2 1167 645 816 391.8 1030.2 958.2 624
SH 120.3 0 137.6 72.8 99.6 86.1 172.5 173.8 124.4
670.2 0 757.2 481.8 600.6 578.4 1159.8 1005.6 858.6
SZ 189.1 137.6 0 103.9 75.3 153.5 187.9 164.3 173.2
1167 757.2 0 528 381 816 858.6 689.4 852.6
WH 102.7 72.8 103.9 0 38.3 51.4 113.1 102.7 90
645 481.8 528 0 176.4 291 679.8 523.2 435
CS 130.7 99.6 75.3 38.3 0 78.6 112.9 93.3 116.9
816 600.6 381 176.4 0 442.8 616.2 442.8 486.6
ZZ 62.9 86.1 153.5 51.4 78.6 0 112.7 115.5 49.5
391.8 578.4 816 291 442.8 0 690 586.8 308.4
CD 164.4 172.5 187.9 113.1 112.9 112.7 0 34.7 74.4
1030.2 1159.8 858.6 679.8 616.2 690 0 175.8 405.6
CQ 167 173.8 164.3 102.7 93.3 115.5 34.7 0 69.5
958.2 1005.6 689.4 523.2 442.8 586.8 175.8 0 355.2
Note: the italic numbers denote unit cost of rail, and non-italic numbers denote unit cost of truck.
cost BJ SH SZ WH CS ZZ CD CQ XA
YA 127.6 150.8 199.6 116.1 143.3 75.9 100.8 93.9 37.6
516 877.2 984.6 517.8 607.8 298.2 533.4 508.8 157.2
TC 110.2 133.4 182.2 98.7 125.9 58.5 83.4 78.5 20.2
588 866.4 899.4 467.4 529.2 300.6 444 406.2 53.4
BO 114.2 137.4 186.2 102.7 129.9 62.5 61.4 82.5 24.2
720.6 976.8 912.6 543 566.4 427.2 322.2 324 120
XY 102.9 126.1 174.9 91.5 118.6 51.3 72.6 67.8 12.9
636.6 879.6 866.4 454.8 503.4 327.6 393.6 352.2 21
WN 97 120.2 187.7 85.5 112.7 45.3 78.6 73.7 15.4
589.8 829.2 852 416.4 481.2 273.6 440.4 383.4 35.4
XA 101.2 124.4 173.2 90 116.9 49.5 74.4 69.5 11.2
624 858.6 852.6 435 486.6 308.4 405.6 355.2 0
BJ 0 120.3 189.1 102.7 130.7 62.9 164.4 167 101.2
0 670.2 1167 645 816 391.8 1030.2 958.2 624
SH 120.3 0 137.6 72.8 99.6 86.1 172.5 173.8 124.4
670.2 0 757.2 481.8 600.6 578.4 1159.8 1005.6 858.6
SZ 189.1 137.6 0 103.9 75.3 153.5 187.9 164.3 173.2
1167 757.2 0 528 381 816 858.6 689.4 852.6
WH 102.7 72.8 103.9 0 38.3 51.4 113.1 102.7 90
645 481.8 528 0 176.4 291 679.8 523.2 435
CS 130.7 99.6 75.3 38.3 0 78.6 112.9 93.3 116.9
816 600.6 381 176.4 0 442.8 616.2 442.8 486.6
ZZ 62.9 86.1 153.5 51.4 78.6 0 112.7 115.5 49.5
391.8 578.4 816 291 442.8 0 690 586.8 308.4
CD 164.4 172.5 187.9 113.1 112.9 112.7 0 34.7 74.4
1030.2 1159.8 858.6 679.8 616.2 690 0 175.8 405.6
CQ 167 173.8 164.3 102.7 93.3 115.5 34.7 0 69.5
958.2 1005.6 689.4 523.2 442.8 586.8 175.8 0 355.2
Note: the italic numbers denote unit cost of rail, and non-italic numbers denote unit cost of truck.
Table 5.  Three metrics for MMPSO, MBPSO and NSGA-Ⅱ against three medium and three large randomly generated problems
Pro. Item ER CT/seconds $\Delta$
MMPSO MBPSO NSGA-Ⅱ MMPSO MBPSO NSGA-Ⅱ MMPSO MBPSO NSGA-Ⅱ
Pro
4
avg. 0.367 0.96 0.52 767.1 784.9 798.3 0.303 0.455 0.436
best 0.3 0.933 0.13 737.6 762.3 773.1 0.199 0.394 0.373
std. 0.0782 0.0279 0.288 35.8 20 29.3 0.049 0.047 0.051
Pro
5
avg. 0.513 0.9 0.547 1147.9 1193.8 1174.6 0.318 0.714 0.453
best 0.433 0.8 0.433 1091.6 1138.7 1131 0.266 0.695 0.408
std. 0.0506 0.085 0.0989 36.7 41.2 41.6 0.039 0.014 0.043
Pro
6
avg. 0.487 0.953 0.52 1487.6 1472.1 1491.9 0.315 0.502 0.461
best 0.433 0.9 0.3 1424.8 1421.8 1404.4 0.232 0.358 0.412
std. 0.0581 0.04 0.1609 46.4 38.69 100.8 0.062 0.084 0.041
Pro
7
avg. 0.488 0.958 0.519 1511.4 1529.3 1538.9 0.304 0.436 0.423
best 0.4 0.85 0.35 1484.8 1494.3 1526.6 0.239 0.356 0.378
std. 0.0598 0.054 0.165 16.29 38.03 12.52 0.059 0.042 0.037
Pro
8
avg. 0.48 0.946 0.48 1947.2 1953.6 1951.6 0.346 0.506 0.435
best 0.375 0.9 0.4 1933.2 1932.8 1944.6 0.292 0.421 0.302
std. 0.087 0.025 0.043 13.7 14.5 6.43 0.041 0.046 0.057
Pro
9
avg. 0.472 0.958 0.544 2351.2 2383 2355.8 0.323 0.509 0.413
best 0.35 0.95 0.325 2343 2316.3 2348.1 0.239 0.432 0.303
std. 0.078 0.013 0.188 7.62 9.21 6.74 0.079 0.053 0.069
Pro. Item ER CT/seconds $\Delta$
MMPSO MBPSO NSGA-Ⅱ MMPSO MBPSO NSGA-Ⅱ MMPSO MBPSO NSGA-Ⅱ
Pro
4
avg. 0.367 0.96 0.52 767.1 784.9 798.3 0.303 0.455 0.436
best 0.3 0.933 0.13 737.6 762.3 773.1 0.199 0.394 0.373
std. 0.0782 0.0279 0.288 35.8 20 29.3 0.049 0.047 0.051
Pro
5
avg. 0.513 0.9 0.547 1147.9 1193.8 1174.6 0.318 0.714 0.453
best 0.433 0.8 0.433 1091.6 1138.7 1131 0.266 0.695 0.408
std. 0.0506 0.085 0.0989 36.7 41.2 41.6 0.039 0.014 0.043
Pro
6
avg. 0.487 0.953 0.52 1487.6 1472.1 1491.9 0.315 0.502 0.461
best 0.433 0.9 0.3 1424.8 1421.8 1404.4 0.232 0.358 0.412
std. 0.0581 0.04 0.1609 46.4 38.69 100.8 0.062 0.084 0.041
Pro
7
avg. 0.488 0.958 0.519 1511.4 1529.3 1538.9 0.304 0.436 0.423
best 0.4 0.85 0.35 1484.8 1494.3 1526.6 0.239 0.356 0.378
std. 0.0598 0.054 0.165 16.29 38.03 12.52 0.059 0.042 0.037
Pro
8
avg. 0.48 0.946 0.48 1947.2 1953.6 1951.6 0.346 0.506 0.435
best 0.375 0.9 0.4 1933.2 1932.8 1944.6 0.292 0.421 0.302
std. 0.087 0.025 0.043 13.7 14.5 6.43 0.041 0.046 0.057
Pro
9
avg. 0.472 0.958 0.544 2351.2 2383 2355.8 0.323 0.509 0.413
best 0.35 0.95 0.325 2343 2316.3 2348.1 0.239 0.432 0.303
std. 0.078 0.013 0.188 7.62 9.21 6.74 0.079 0.053 0.069
Table 2.  Characteristics of all randomly generated SCND problems
Problem # I J K S P M
Medium size 4 8 10 12 19 3 3
5 10 12 14 23 3 3
6 12 14 15 25 3 3
Large size 7 14 15 16 29 5 4
8 15 18 18 33 5 4
9 17 19 20 35 5 4
Problem # I J K S P M
Medium size 4 8 10 12 19 3 3
5 10 12 14 23 3 3
6 12 14 15 25 3 3
Large size 7 14 15 16 29 5 4
8 15 18 18 33 5 4
9 17 19 20 35 5 4
Table 3.  Comparison of location decisions for case 3 with and without TM selection
Plant locations DC locations
YA TC BO XY WN BJ SH SZ ZZ WH XA
1 1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 0 1 1 1
TM Selection
Optional TMs Supplier-to-Plant Plant-to-DC DC-to-CZ
Truck only Truck Truck Truck
Truck and Rail Truck Rail Rail
Note: the first row with italic numbers is binary decision without TM selection, and the second row is with TM selection
Plant locations DC locations
YA TC BO XY WN BJ SH SZ ZZ WH XA
1 1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 0 1 1 1
TM Selection
Optional TMs Supplier-to-Plant Plant-to-DC DC-to-CZ
Truck only Truck Truck Truck
Truck and Rail Truck Rail Rail
Note: the first row with italic numbers is binary decision without TM selection, and the second row is with TM selection
Table 4.  Three metrics for MMPSO, MBPSO and NSGA-Ⅱ against three small cases
Case Metric Algorithm Run 1 Run 2 Run 3 Run 4 Run 5 Average Best
Case1 ER MMPSO 15/20 12/20 8/20 3/20 7/20 $45\%$ $15\%$
MBPSO 19/20 11/20 12/20 14/20 16/20 72% 55%
NSGA-Ⅱ 11/20 8/20 10/20 12/20 10/20 51% 40%
CT/seconds MMPSO 46.550 49.901 45.615 41.948 48.298 46.462 41.948
MBPSO 53.029 54.990 51.532 54.416 52.358 53.265 51.532
NSGA-Ⅱ 56.441 53.788 52.416 52.791 54.148 53.917 52.416
$\Delta$ MMPSO 0.478 0.467 0.313 0.322 0.462 0.408 0.313
MBPSO 0.290 0.326 0.357 0.339 0.315 0.326 0.290
NSGA-Ⅱ 0.580 0.470 0.626 0.426 0.645 0.549 0.426
Case2 ER MMPSO 11/20 8/20 9/20 8/20 11/20 47% 40%
MBPSO 20/20 15/20 18/20 16/20 16/20 85% 75%
NSGA-Ⅱ 11/20 12/20 12/20 10/20 9/20 54% 50%
CT/seconds MMPSO 54.413 52.953 54.179 59.585 59.405 56.107 52.953
MBPSO 50.104 53.325 55.099 60.025 54.380 54.587 50.104
NSGA-Ⅱ 56.471 58.846 60.847 55.968 57.705 57.967 55.968
$\Delta$ MMPSO 0.283 0.369 0.326 0.275 0.341 0.319 0.275
MBPSO 0.329 0.353 0.269 0.391 0.357 0.339 0.269
NSGA-Ⅱ 0.631 0.578 0.455 0.517 0.503 0.537 0.455
Case3 ER MMPSO 8/20 9/20 8/20 14/20 8/20 47% 40%
MBPSO 17/20 14/20 17/20 13/20 16/20 77% 65%
NSGA-Ⅱ 7/20 10/20 12/20 12/20 10/20 51% 35%
CT/seconds MMPSO 43.607 43.898 37.106 39.952 42.460 41.405 37.106
MBPSO 43.612 42.369 43.306 42.728 48.301 44.063 42.369
NSGA-Ⅱ 45.038 48.282 44.382 45.383 46.448 45.907 44.382
$\Delta$ MMPSO 0.365 0.257 0.373 0.338 0.286 0.324 0.257
MBPSO 0.412 0.379 0.408 0.292 0.238 0.346 0.238
NSGA-Ⅱ 0.536 0.544 0.562 0.498 0.571 0.542 0.498
Case Metric Algorithm Run 1 Run 2 Run 3 Run 4 Run 5 Average Best
Case1 ER MMPSO 15/20 12/20 8/20 3/20 7/20 $45\%$ $15\%$
MBPSO 19/20 11/20 12/20 14/20 16/20 72% 55%
NSGA-Ⅱ 11/20 8/20 10/20 12/20 10/20 51% 40%
CT/seconds MMPSO 46.550 49.901 45.615 41.948 48.298 46.462 41.948
MBPSO 53.029 54.990 51.532 54.416 52.358 53.265 51.532
NSGA-Ⅱ 56.441 53.788 52.416 52.791 54.148 53.917 52.416
$\Delta$ MMPSO 0.478 0.467 0.313 0.322 0.462 0.408 0.313
MBPSO 0.290 0.326 0.357 0.339 0.315 0.326 0.290
NSGA-Ⅱ 0.580 0.470 0.626 0.426 0.645 0.549 0.426
Case2 ER MMPSO 11/20 8/20 9/20 8/20 11/20 47% 40%
MBPSO 20/20 15/20 18/20 16/20 16/20 85% 75%
NSGA-Ⅱ 11/20 12/20 12/20 10/20 9/20 54% 50%
CT/seconds MMPSO 54.413 52.953 54.179 59.585 59.405 56.107 52.953
MBPSO 50.104 53.325 55.099 60.025 54.380 54.587 50.104
NSGA-Ⅱ 56.471 58.846 60.847 55.968 57.705 57.967 55.968
$\Delta$ MMPSO 0.283 0.369 0.326 0.275 0.341 0.319 0.275
MBPSO 0.329 0.353 0.269 0.391 0.357 0.339 0.269
NSGA-Ⅱ 0.631 0.578 0.455 0.517 0.503 0.537 0.455
Case3 ER MMPSO 8/20 9/20 8/20 14/20 8/20 47% 40%
MBPSO 17/20 14/20 17/20 13/20 16/20 77% 65%
NSGA-Ⅱ 7/20 10/20 12/20 12/20 10/20 51% 35%
CT/seconds MMPSO 43.607 43.898 37.106 39.952 42.460 41.405 37.106
MBPSO 43.612 42.369 43.306 42.728 48.301 44.063 42.369
NSGA-Ⅱ 45.038 48.282 44.382 45.383 46.448 45.907 44.382
$\Delta$ MMPSO 0.365 0.257 0.373 0.338 0.286 0.324 0.257
MBPSO 0.412 0.379 0.408 0.292 0.238 0.346 0.238
NSGA-Ⅱ 0.536 0.544 0.562 0.498 0.571 0.542 0.498
[1]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1413-1426. doi: 10.3934/dcdss.2019097

[2]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-25. doi: 10.3934/jimo.2018074

[3]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[4]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial & Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[5]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[6]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[7]

Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks & Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631

[8]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 979-987. doi: 10.3934/dcdss.2019066

[9]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-22. doi: 10.3934/jimo.2018038

[10]

Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial & Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i

[11]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[12]

Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267

[13]

Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009

[14]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[15]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[16]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[17]

Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747

[18]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-27. doi: 10.3934/jimo.2018151

[19]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018125

[20]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (24)
  • HTML views (535)
  • Cited by (0)

Other articles
by authors

[Back to Top]