doi: 10.3934/jimo.2018084

Global and local advertising strategies: A dynamic multi-market optimal control model

Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Diagonal Las Torres 2640, Peñalolén, 7941169, Santiago, Chile

* Corresponding author: Tel: +56 2 23311491 - email: marcelo.villena@uai.cl

Received  March 2016 Revised  March 2018 Published  July 2018

Differential games have been widely used to model advertising strategies of companies. Nevertheless, most of these studies have concentrated on the dynamics and market structure of the problem, neglecting their multi-market dimension. Since nowadays competition typically operates on multi-product contexts and usually in geographically separated markets, the optimal advertising strategies must take into consideration the different levels of disaggregation, especially, for example, in retail multi-product and multi-store competition contexts. In this paper, we look into the decision-making process of a multi-market company that has to decide where, when and how much money to invest in advertising. For this purpose, we develop a model that keeps the dynamic and oligopolistic nature of the traditional advertising game introducing the multi-market dimension of today's economies, while differentiating global (i.e. national TV) from local advertising strategies (i.e. a price discount promotion in a particular store). It is important to note, however, that even though this problem is real for most multi-market companies, it has not been addressed in the differential games literature. On the more technical side, we steer away from the traditional aggregated dynamics of advertising games in two aspects. Firstly, we can model different markets at once, obtaining a global instead of a local optimum, and secondly, since we are incorporating a variable that is common to markets, the resulting equations systems for every market are now coupled. In other words, one's decision in one market does not only affect one's competition in that particular market; it also affects one's decisions and one's competitors in all markets.

Citation: Marcelo J. Villena, Mauricio Contreras. Global and local advertising strategies: A dynamic multi-market optimal control model. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018084
References:
[1]

A. Beresteanu, P. Ellickson and S. Misra, The dynamics of retail oligopoly, Working Papers.

[2]

M. BretonR. Jarrar and G. Zaccour, A note on feedback sequential equilibria in a lanchester model with empirical application, Management Science, 52 (2006), 804-811. doi: 10.1287/mnsc.1050.0475.

[3]

A. BurattoL. Grosset and B. Viscolani, Advertising channel selection in a segmented market, Automatica, 42 (2006), 1343-1347.

[4]

R. Cellini and L. Lambertini, Advertising in a differential oligopoly game, Journal of Optimization Theory and Applications, 116 (2003), 61-81. doi: 10.1023/A:1022158102252.

[5]

P. K. Chintagunta and D. Jain, Empirical analysis of a dynamic duopoly model of competition, Journal of Economics and Management Strategy, 4 (1995), 109-131.

[6]

P. K. Chintagunta and N. Vilcassim, An empirical investigation of advertising strategies in a dynamic duopoly, Management Science, 38 (1992), 1230-1244. doi: 10.1287/mnsc.38.9.1230.

[7]

P. Davis, Spatial competition in retail markets: Movie theaters, The RAND Journal of Economics, 37 (2006), 964-982. doi: 10.1111/j.1756-2171.2006.tb00066.x.

[8]

E. J. Dockne and S. Jorgensen, New product advertising in dynamic oligopolies, Zeitschrift fur Operations Research, 36 (1992), 459-473. doi: 10.1007/BF01415762.

[9]

E. J. Dockner, S. Jorgensen, N. Van Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, U. K, 2000. doi: 10.1017/CBO9780511805127.

[10]

P. B. Ellickson and S. Misra, Supermarket pricing strategies, Marketing Science, 27 (2008), 811-828. doi: 10.1287/mksc.1080.0398.

[11]

G. M. Erickson, Empirical analysis of closed-loop duopoly advertising strategies, Management Science, 38 (1992), 1732-1749. doi: 10.1287/mnsc.38.12.1732.

[12]

G. Erickson, Dynamic Models of Advertising Competition, 2nd edition, Kluwer, Norwell, MA, 2003.

[13]

G. Erickson, An oligopoly model of dynamic advertising competition, European Journal of Operational Research, 197 (2009), 374-388. doi: 10.1016/j.ejor.2008.06.023.

[14]

G. FeichtingerR. F. l. Hart and S. P. Sethi, Dynamic optimal control models in advertising: Recent developments, Management Science, 40 (1994), 195-226. doi: 10.1287/mnsc.40.2.195.

[15]

G. Fruchter, The many-player advertising game, Management Science, 45 (1999), 1609-1611. doi: 10.1287/mnsc.45.11.1609.

[16]

G. Fruchter and S. Kalish, Closed-loop advertising strategies in a duopoly, Management Science, 43 (1997), 54-63. doi: 10.1287/mnsc.43.1.54.

[17]

E. González and M. Villena, Spatial lanchester models, European Journal of Operational Research, 210 (2011), 706-715. doi: 10.1016/j.ejor.2010.11.009.

[18]

M. L. Huang J. and L. Liang, Recent developments in dynamic advertising research, European Journal of Operational Research, 220 (2012), 591-609. doi: 10.1016/j.ejor.2012.02.031.

[19]

R. S. Jarmin, K. Shawn and J. Miranda, The role of retail chains: National, regional, and industry results, in Producer Dynamics: New Evidence from Micro Data, University of Chicago Press, 2009,237{262.

[20]

S. Jørgensen, A survey of some differential games in advertising, Journal of Economic Dynamics and Control, 4 (1982), 341-369. doi: 10.1016/0165-1889(82)90024-0.

[21]

S. Jørgensen and G. Zaccour, Differential Games in Marketing, vol. 15, Springer, 2004.

[22]

G. Kimball, Some industrial applications of military operations research methods, Operations Research, 5 (1957), 201-204. doi: 10.1287/opre.5.2.201.

[23]

A. KrishnamoorthyA. Prasad and S. Sethi, Optimal pricing and advertising in a durable-good duopoly, European Journal of Operational Research, 200 (2010), 486-497. doi: 10.1016/j.ejor.2009.01.003.

[24]

F. W. Lanchester, Aircraft in Warfare: The Dawn of the Fourth Arm, Constable limited, 1916.

[25]

J. D. Little, Aggregate advertising models: The state of the art, Operations research, 27 (1979), 629-667.

[26]

C. Marinelli and S. Savin, Optimal distributed dynamic advertising, Journal of Optimization Theory and Applications, 137 (2008), 569-591. doi: 10.1007/s10957-007-9350-6.

[27]

M. Nerlove and K. Arrow, Optimal advertising policy under dynamic conditions, Mathematical Models in Marketing, 132 (1976), 129-142. doi: 10.1007/978-3-642-51565-1_54.

[28]

A. Prasad and S. P. Sethi, Advertising under uncertainty: A stochastic differential game approach, Journal of Optimization Theory and Applications, 123 (2004), 163-185. doi: 10.1023/B:JOTA.0000043996.62867.20.

[29]

S. P. Sethi, Deterministic and stochastic optimization of a dynamic advertising model, Optimal Control Applications and Methods, 4 (1983), 179-184. doi: 10.1002/oca.4660040207.

[30]

S. P. Sethi and G. L. Thompson, Optimal Control Theory: Applications to Management Science and Economics, Kluwer, Norwell, MA, 2000.

[31]

G. Sorger, Competitive dynamic advertising: A modification of the case game, Journal of Economics Dynamics and Control, 13 (1989), 55-80. doi: 10.1016/0165-1889(89)90011-0.

[32]

M. Vidale and H. Wolfe, An operations research study of sales response to advertising, Operations Research, 5 (1957), 370-381. doi: 10.1287/opre.5.3.370.

show all references

References:
[1]

A. Beresteanu, P. Ellickson and S. Misra, The dynamics of retail oligopoly, Working Papers.

[2]

M. BretonR. Jarrar and G. Zaccour, A note on feedback sequential equilibria in a lanchester model with empirical application, Management Science, 52 (2006), 804-811. doi: 10.1287/mnsc.1050.0475.

[3]

A. BurattoL. Grosset and B. Viscolani, Advertising channel selection in a segmented market, Automatica, 42 (2006), 1343-1347.

[4]

R. Cellini and L. Lambertini, Advertising in a differential oligopoly game, Journal of Optimization Theory and Applications, 116 (2003), 61-81. doi: 10.1023/A:1022158102252.

[5]

P. K. Chintagunta and D. Jain, Empirical analysis of a dynamic duopoly model of competition, Journal of Economics and Management Strategy, 4 (1995), 109-131.

[6]

P. K. Chintagunta and N. Vilcassim, An empirical investigation of advertising strategies in a dynamic duopoly, Management Science, 38 (1992), 1230-1244. doi: 10.1287/mnsc.38.9.1230.

[7]

P. Davis, Spatial competition in retail markets: Movie theaters, The RAND Journal of Economics, 37 (2006), 964-982. doi: 10.1111/j.1756-2171.2006.tb00066.x.

[8]

E. J. Dockne and S. Jorgensen, New product advertising in dynamic oligopolies, Zeitschrift fur Operations Research, 36 (1992), 459-473. doi: 10.1007/BF01415762.

[9]

E. J. Dockner, S. Jorgensen, N. Van Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, U. K, 2000. doi: 10.1017/CBO9780511805127.

[10]

P. B. Ellickson and S. Misra, Supermarket pricing strategies, Marketing Science, 27 (2008), 811-828. doi: 10.1287/mksc.1080.0398.

[11]

G. M. Erickson, Empirical analysis of closed-loop duopoly advertising strategies, Management Science, 38 (1992), 1732-1749. doi: 10.1287/mnsc.38.12.1732.

[12]

G. Erickson, Dynamic Models of Advertising Competition, 2nd edition, Kluwer, Norwell, MA, 2003.

[13]

G. Erickson, An oligopoly model of dynamic advertising competition, European Journal of Operational Research, 197 (2009), 374-388. doi: 10.1016/j.ejor.2008.06.023.

[14]

G. FeichtingerR. F. l. Hart and S. P. Sethi, Dynamic optimal control models in advertising: Recent developments, Management Science, 40 (1994), 195-226. doi: 10.1287/mnsc.40.2.195.

[15]

G. Fruchter, The many-player advertising game, Management Science, 45 (1999), 1609-1611. doi: 10.1287/mnsc.45.11.1609.

[16]

G. Fruchter and S. Kalish, Closed-loop advertising strategies in a duopoly, Management Science, 43 (1997), 54-63. doi: 10.1287/mnsc.43.1.54.

[17]

E. González and M. Villena, Spatial lanchester models, European Journal of Operational Research, 210 (2011), 706-715. doi: 10.1016/j.ejor.2010.11.009.

[18]

M. L. Huang J. and L. Liang, Recent developments in dynamic advertising research, European Journal of Operational Research, 220 (2012), 591-609. doi: 10.1016/j.ejor.2012.02.031.

[19]

R. S. Jarmin, K. Shawn and J. Miranda, The role of retail chains: National, regional, and industry results, in Producer Dynamics: New Evidence from Micro Data, University of Chicago Press, 2009,237{262.

[20]

S. Jørgensen, A survey of some differential games in advertising, Journal of Economic Dynamics and Control, 4 (1982), 341-369. doi: 10.1016/0165-1889(82)90024-0.

[21]

S. Jørgensen and G. Zaccour, Differential Games in Marketing, vol. 15, Springer, 2004.

[22]

G. Kimball, Some industrial applications of military operations research methods, Operations Research, 5 (1957), 201-204. doi: 10.1287/opre.5.2.201.

[23]

A. KrishnamoorthyA. Prasad and S. Sethi, Optimal pricing and advertising in a durable-good duopoly, European Journal of Operational Research, 200 (2010), 486-497. doi: 10.1016/j.ejor.2009.01.003.

[24]

F. W. Lanchester, Aircraft in Warfare: The Dawn of the Fourth Arm, Constable limited, 1916.

[25]

J. D. Little, Aggregate advertising models: The state of the art, Operations research, 27 (1979), 629-667.

[26]

C. Marinelli and S. Savin, Optimal distributed dynamic advertising, Journal of Optimization Theory and Applications, 137 (2008), 569-591. doi: 10.1007/s10957-007-9350-6.

[27]

M. Nerlove and K. Arrow, Optimal advertising policy under dynamic conditions, Mathematical Models in Marketing, 132 (1976), 129-142. doi: 10.1007/978-3-642-51565-1_54.

[28]

A. Prasad and S. P. Sethi, Advertising under uncertainty: A stochastic differential game approach, Journal of Optimization Theory and Applications, 123 (2004), 163-185. doi: 10.1023/B:JOTA.0000043996.62867.20.

[29]

S. P. Sethi, Deterministic and stochastic optimization of a dynamic advertising model, Optimal Control Applications and Methods, 4 (1983), 179-184. doi: 10.1002/oca.4660040207.

[30]

S. P. Sethi and G. L. Thompson, Optimal Control Theory: Applications to Management Science and Economics, Kluwer, Norwell, MA, 2000.

[31]

G. Sorger, Competitive dynamic advertising: A modification of the case game, Journal of Economics Dynamics and Control, 13 (1989), 55-80. doi: 10.1016/0165-1889(89)90011-0.

[32]

M. Vidale and H. Wolfe, An operations research study of sales response to advertising, Operations Research, 5 (1957), 370-381. doi: 10.1287/opre.5.3.370.

Figure 2.  $\mu_{i}(t)$ for the global case in table 2
Figure 3.  $\lambda^{i}(t)$ for the global case in table 2
Figure 4.  Phase space diagram ($\lambda^{i}$ versus $x$) for the global case in table 2
Figure 1.  $x(t)$ for the global case in table 2
Figure 5.  Game description
Figure 6.  Case 1 in table 3
Figure 7.  Case 2 in table 3
Figure 8.  Case 3 in table 3
Figure 9.  Case 4 in table 3
Figure 10.  The pure-global case, case 0
Figure 11.  The quasi-global case, case 1
Figure 12.  The local case, case 2
Table 1.  Notation
$J_{i}$ Profit function of player $i$
$x_{ik}(t)$ Market share of player $i$ at location $k$
$q_{ik}$ Gross profit rate per unit of market share of player $i$ at location $k$
$Q_{ik}$ Second order gross profit rate per unit of market share of player $i$ at location $k$
$b_{ik}$ Linear local advertising cost of player $i$ at location $k$
$B_{ik}$ Second order local advertising cost of player $i$ at location $k$
$e_{i}$ Linear global advertising cost of player $i$ at location $k$
$E_{i}$ Second order global advertising cost of player $i$
$\sigma_{ik}$ Effectiveness of local advertising of player $i$ at location $k$
$\sigma_{i}$ Effectiveness of global advertising of player $i$ at location $k$
$r_{i}$ Discount rate of player $i$
$\mu_{ik}(t)$ Local advertising effort of player $i$ at location $k$
$\mu_{i}(t)$ Global advertising effort of player $i$
$J_{i}$ Profit function of player $i$
$x_{ik}(t)$ Market share of player $i$ at location $k$
$q_{ik}$ Gross profit rate per unit of market share of player $i$ at location $k$
$Q_{ik}$ Second order gross profit rate per unit of market share of player $i$ at location $k$
$b_{ik}$ Linear local advertising cost of player $i$ at location $k$
$B_{ik}$ Second order local advertising cost of player $i$ at location $k$
$e_{i}$ Linear global advertising cost of player $i$ at location $k$
$E_{i}$ Second order global advertising cost of player $i$
$\sigma_{ik}$ Effectiveness of local advertising of player $i$ at location $k$
$\sigma_{i}$ Effectiveness of global advertising of player $i$ at location $k$
$r_{i}$ Discount rate of player $i$
$\mu_{ik}(t)$ Local advertising effort of player $i$ at location $k$
$\mu_{i}(t)$ Global advertising effort of player $i$
Table 2.  Data for the pure global game.
Global parameters
$q_{11}$ 0.8
$q_{21}$ 0.3
$Q_{11}$ 0.0
$Q_{21}$ 0.0
$e_{1}$ 0.0
$e_{2}$ 0.0
$E_{1}$ 0.5
$E_{2}$ 0.3
$\sigma_{1}$ 0.95
$\sigma_{2}$ 1.6
$r_{1}$ 0.01
$r_{2}$ 0.05
Global parameters
$q_{11}$ 0.8
$q_{21}$ 0.3
$Q_{11}$ 0.0
$Q_{21}$ 0.0
$e_{1}$ 0.0
$e_{2}$ 0.0
$E_{1}$ 0.5
$E_{2}$ 0.3
$\sigma_{1}$ 0.95
$\sigma_{2}$ 1.6
$r_{1}$ 0.01
$r_{2}$ 0.05
Table 3.  Data of numerical examples
Case 1 Case 2 Case 3 Case 4
Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2
1 2 1 2 1 2 1 2
$q_{i1}$ 3 3 3 3 3 3 3 3
$q_{i2}$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
$B_{i1}$ 1 1 1 1 1 1 1 1
$B_{i2}$ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
$E_{i}$ 1 1 1 2 1 1 1 1
$\sigma_{i1}$ 0.1 0.1 0.1 0.1 0.7 0.1 0.7 0.8
$\sigma_{i2}$ 0.1 0.1 0.1 0.1 0.7 0.1 0.7 0
$\sigma_{i}$ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Case 1 Case 2 Case 3 Case 4
Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2
1 2 1 2 1 2 1 2
$q_{i1}$ 3 3 3 3 3 3 3 3
$q_{i2}$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
$B_{i1}$ 1 1 1 1 1 1 1 1
$B_{i2}$ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
$E_{i}$ 1 1 1 2 1 1 1 1
$\sigma_{i1}$ 0.1 0.1 0.1 0.1 0.7 0.1 0.7 0.8
$\sigma_{i2}$ 0.1 0.1 0.1 0.1 0.7 0.1 0.7 0
$\sigma_{i}$ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Table 4.  Data for pure-global (case 0), quasi-global (case 1) and local effects (case 2).
Case 0: pure-global Case 1: quasi-global Case 2: local effects
Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm2
\hline $q_{i1}$ 0.8 0.3 0.8 0.3 0.8 0.3
$q_{i2}$ 0.8 0.3 0.8 0.3 0.8 0.3
$Q_{i1}$ 0 0 0 0 0 0
$Q_{i2}$ 0 0 0 0 0 0
$b_{i1}$ 0 0 0 0 0 0
$b_{i2}$ 0 0 0 0 0 0
$B_{i1}$ 0 0 0.001 0.001 5 0.1
$B_{i2}$ 0 0 0.001 0.001 1 2
$e_{i}$ 0 0 0 0 0 0
$E_{i}$ 1 2 1 2 1 2
$\sigma_{i1}$ 0 0 0 0 0.1 0.3
$\sigma_{i2}$ 0 0 0 0 0.6 0.1
$\sigma_{i}$ 1 1.9 1 1.9 1 1.9
$r_{i}$ 0.01 0.05 0.01 0.05 0.01 0.05
Case 0: pure-global Case 1: quasi-global Case 2: local effects
Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm2
\hline $q_{i1}$ 0.8 0.3 0.8 0.3 0.8 0.3
$q_{i2}$ 0.8 0.3 0.8 0.3 0.8 0.3
$Q_{i1}$ 0 0 0 0 0 0
$Q_{i2}$ 0 0 0 0 0 0
$b_{i1}$ 0 0 0 0 0 0
$b_{i2}$ 0 0 0 0 0 0
$B_{i1}$ 0 0 0.001 0.001 5 0.1
$B_{i2}$ 0 0 0.001 0.001 1 2
$e_{i}$ 0 0 0 0 0 0
$E_{i}$ 1 2 1 2 1 2
$\sigma_{i1}$ 0 0 0 0 0.1 0.3
$\sigma_{i2}$ 0 0 0 0 0.6 0.1
$\sigma_{i}$ 1 1.9 1 1.9 1 1.9
$r_{i}$ 0.01 0.05 0.01 0.05 0.01 0.05
[1]

Chloe A. Fletcher, Jason S. Howell. Dynamic modeling of nontargeted and targeted advertising strategies in an oligopoly. Journal of Dynamics & Games, 2017, 4 (2) : 97-124. doi: 10.3934/jdg.2017007

[2]

F. M. Bass, A. Krishnamoorthy, A. Prasad, Suresh P. Sethi. Advertising competition with market expansion for finite horizon firms. Journal of Industrial & Management Optimization, 2005, 1 (1) : 1-19. doi: 10.3934/jimo.2005.1.1

[3]

Lei Yang, Jingna Ji, Kebing Chen. Advertising games on national brand and store brand in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2018, 14 (1) : 105-134. doi: 10.3934/jimo.2017039

[4]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[5]

P. C. Jha, Sugandha Aggarwal, Anshu Gupta, Ruhul Sarker. Multi-criteria media mix decision model for advertising a single product with segment specific and mass media. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1367-1389. doi: 10.3934/jimo.2016.12.1367

[6]

Qinglei Zhang, Wenying Feng. Detecting coalition attacks in online advertising: A hybrid data mining approach. Big Data & Information Analytics, 2016, 1 (2&3) : 227-245. doi: 10.3934/bdia.2016006

[7]

Kemal Kilic, Menekse G. Saygi, Semih O. Sezer. Exact and heuristic methods for personalized display advertising in virtual reality platforms. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-22. doi: 10.3934/jimo.2018073

[8]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[9]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[10]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[11]

Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141

[12]

Lisa C Flatley, Robert S MacKay, Michael Waterson. Optimal strategies for operating energy storage in an arbitrage or smoothing market. Journal of Dynamics & Games, 2016, 3 (4) : 371-398. doi: 10.3934/jdg.2016020

[13]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[14]

Natalia Kudryashova. Strategic games in a competitive market: Feedback from the users' environment. Conference Publications, 2015, 2015 (special) : 745-753. doi: 10.3934/proc.2015.0745

[15]

John A. Morgan. Interception in differential pursuit/evasion games. Journal of Dynamics & Games, 2016, 3 (4) : 335-354. doi: 10.3934/jdg.2016018

[16]

Yves Achdou, Victor Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks & Heterogeneous Media, 2012, 7 (2) : 197-217. doi: 10.3934/nhm.2012.7.197

[17]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-27. doi: 10.3934/dcdsb.2018257

[18]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[19]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[20]

Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (27)
  • HTML views (294)
  • Cited by (0)

Other articles
by authors

[Back to Top]