doi: 10.3934/jimo.2018080

A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications

1. 

Department of Mathematics, ORT Braude College, 2161002 Karmiel, Israel

2. 

The Center for Mathematics and Scientific Computation, University of Haifa, Mt. Carmel, 3498838 Haifa, Israel

3. 

Department of Mathematics, University of Transport and Communications, 3 Cau Giay Street, Hanoi, Vietnam

* Corresponding author: avivg@braude.ac.il

Received  November 2017 Revised  January 2018 Published  June 2018

Fund Project: The first author work is supported by the EU FP7 IRSES program STREVCOMS, grant no. PIRSES-GA-2013-612669. The research of the third author was partially supported by University of Transport and Communications (UTC) [grant number T2018-CB-002] and Vietnam Institute for Advanced Study in Mathematics (VIASM)

Inspired by the works of López et al. [21] and the recent paper of Dang et al. [15], we devise a new inertial relaxation of the CQ algorithm for solving Split Feasibility Problems (SFP) in real Hilbert spaces. Under mild and standard conditions we establish weak convergence of the proposed algorithm. We also propose a Mann-type variant which converges strongly. The performances and comparisons with some existing methods are presented through numerical examples in Compressed Sensing and Sparse Binary Tomography by solving the LASSO problem.

Citation: Aviv Gibali, Dang Thi Mai, Nguyen The Vinh. A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018080
References:
[1]

F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11. doi: 10.1023/A:1011253113155.

[2]

Q. H. Ansari and A. Rehan, Split feasibility and fixed point problems, In: Q. H. Ansari (ed.), Nonlinear Anal. Approx. The., Optim. Appl., Springer, (2014), 281-322.

[3]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, 1993. doi: 10.1007/978-3-662-02959-6.

[4]

K. J. Batenburg, A network flow algorithm for reconstructing binary images from discrete X-rays, J. Math. Imaging Vis., 27 (2007), 175-191. doi: 10.1007/s10851-006-9798-2.

[5]

D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. doi: 10.1007/978-94-011-4066-9.

[6]

H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367-426. doi: 10.1137/S0036144593251710.

[7]

C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453. doi: 10.1088/0266-5611/18/2/310.

[8]

C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120. doi: 10.1088/0266-5611/20/1/006.

[9]

L. C. CengQ. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (2012), 633-642. doi: 10.1016/j.camwa.2011.12.074.

[10]

Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projection in a product space, Numer. Algorithms, 8 (1994), 221-239. doi: 10.1007/BF02142692.

[11]

Y. CensorT. BortfeldB. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2003), 2353-2365. doi: 10.1088/0031-9155/51/10/001.

[12]

Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084. doi: 10.1088/0266-5611/21/6/017.

[13]

S. ChenD. Donoho and M. Saunders, Atomic decomposition by basis pursuit, SIAM J. Comput., 20 (1998), 33-61. doi: 10.1137/S1064827596304010.

[14]

Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Problems, 27 (2011), 015007, 9 pp. doi: 10.1088/0266-5611/27/1/015007.

[15]

Y. DangJ. Sun and H. K. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Indus. Manage. Optim., 13 (2017), 1383-1394. doi: 10.3934/jimo.2016078.

[16]

A. GibaliL.-W. Liu and Y.-C. Tang, Note on the modified relaxation CQ algorithm for the split feasibility problem, Optim. Lett., (2017), 1-14. doi: 10.1007/s11590-017-1148-3.

[17]

A. Gibali and S. Petra, DC-Programming versus l0-Superiorization for Discrete Tomography, To appear in Analele Ştiinţifice ale Universitatii Ovidius Constanţa, Seria Mathematica, 2017.

[18]

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.

[19]

P. C. Hansen and M. Saxild-Hansen, AIR tools - a MATLAB package of algebraic iterative reconstruction methods, J. Comput. Appl. Math., 236 (2012), 2167-2178. doi: 10.1016/j.cam.2011.09.039.

[20]

M. Li and Y. Yao, Strong convergence of an iterative algorithm for λ-strictly pseudocontractive mappings in Hilbert spaces, Analele Ştiinţifice ale Universitatii Ovidius Constanţa, Seria Mathematica, 18 (2010), 219-228.

[21]

G. LópezV. Martín-MárquezF. Wang and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problems, 28 (2012), 085004, 18 pp. doi: 10.1088/0266-5611/28/8/085004.

[22]

Y. Lou and M. Yan, Fast l1 - l2 Minimization via a proximal operator, arXiv: 1609. 09530.

[23]

P. E. Maingé, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007), 469-479. doi: 10.1016/j.jmaa.2005.12.066.

[24]

P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236. doi: 10.1016/j.cam.2007.07.021.

[25]

P. E. Maingé, Strong convergence of projected subgradientmethods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912. doi: 10.1007/s11228-008-0102-z.

[26]

A. Moudafi and A. Gibali, l1-l2 Regularization of split feasibility problems, Numer. Algorithms, (2017), 1-19. doi: 10.1007/s11075-017-0398-6.

[27]

T. L. N. Nguyen and Y. Shin, Deterministic sensing matrices in compressive sensing: A survey, Sci. World J., 2013 (2013), Article ID 192795, 6 pages. doi: 10.1155/2013/192795.

[28]

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591-597. doi: 10.1090/S0002-9904-1967-11761-0.

[29]

Y. Shehu and O. S. Iyiola, Accelerated hybrid viscosity and steepest-descent method for proximal split feasibility problems, Optimization, 67 (2018), 475-492. doi: 10.1080/02331934.2017.1405955.

[30]

Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl., 19 (2017), 2483-2510. doi: 10.1007/s11784-017-0435-z.

[31]

S. SuantaiN. Pholasa and P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., (2017). doi: 10.3934/jimo.2018023.

[32]

R. Tibshirani, Regression shrinkage and selection Via the lasso, J. Royal Stat. Soc., 58 (1996), 267-288.

[33]

F. Wang and H.-K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74 (2011), 4105-4111. doi: 10.1016/j.na.2011.03.044.

[34]

F. Wang, Polyak's gradient method for split feasibility problem constrained by level sets, Numer. Algorithms, 77 (2018), 925-938. doi: 10.1007/s11075-017-0347-4.

[35]

H.-K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 26 (2010), 105018, 17 pp. doi: 10.1088/0266-5611/26/10/105018.

[36]

H.-K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256. doi: 10.1112/S0024610702003332.

[37]

Z. XuX. ChangF. Xu and H. Zhang, l1-2 Regularization: A thresholding representation theory and a fast solver, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 1013-1027.

[38]

Q. Yang, The relaxed CQ algorithm for solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266. doi: 10.1088/0266-5611/20/4/014.

[39]

H. Zhou and P. Wang, Adaptively relaxed algorithms for solving the split feasibility problem with a new step size, J. Inequal. Appl., 2014 (20214), 22pp. doi: 10.1186/1029-242X-2014-448.

show all references

References:
[1]

F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11. doi: 10.1023/A:1011253113155.

[2]

Q. H. Ansari and A. Rehan, Split feasibility and fixed point problems, In: Q. H. Ansari (ed.), Nonlinear Anal. Approx. The., Optim. Appl., Springer, (2014), 281-322.

[3]

J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, 1993. doi: 10.1007/978-3-662-02959-6.

[4]

K. J. Batenburg, A network flow algorithm for reconstructing binary images from discrete X-rays, J. Math. Imaging Vis., 27 (2007), 175-191. doi: 10.1007/s10851-006-9798-2.

[5]

D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. doi: 10.1007/978-94-011-4066-9.

[6]

H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367-426. doi: 10.1137/S0036144593251710.

[7]

C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453. doi: 10.1088/0266-5611/18/2/310.

[8]

C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120. doi: 10.1088/0266-5611/20/1/006.

[9]

L. C. CengQ. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (2012), 633-642. doi: 10.1016/j.camwa.2011.12.074.

[10]

Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projection in a product space, Numer. Algorithms, 8 (1994), 221-239. doi: 10.1007/BF02142692.

[11]

Y. CensorT. BortfeldB. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2003), 2353-2365. doi: 10.1088/0031-9155/51/10/001.

[12]

Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084. doi: 10.1088/0266-5611/21/6/017.

[13]

S. ChenD. Donoho and M. Saunders, Atomic decomposition by basis pursuit, SIAM J. Comput., 20 (1998), 33-61. doi: 10.1137/S1064827596304010.

[14]

Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Problems, 27 (2011), 015007, 9 pp. doi: 10.1088/0266-5611/27/1/015007.

[15]

Y. DangJ. Sun and H. K. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Indus. Manage. Optim., 13 (2017), 1383-1394. doi: 10.3934/jimo.2016078.

[16]

A. GibaliL.-W. Liu and Y.-C. Tang, Note on the modified relaxation CQ algorithm for the split feasibility problem, Optim. Lett., (2017), 1-14. doi: 10.1007/s11590-017-1148-3.

[17]

A. Gibali and S. Petra, DC-Programming versus l0-Superiorization for Discrete Tomography, To appear in Analele Ştiinţifice ale Universitatii Ovidius Constanţa, Seria Mathematica, 2017.

[18]

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.

[19]

P. C. Hansen and M. Saxild-Hansen, AIR tools - a MATLAB package of algebraic iterative reconstruction methods, J. Comput. Appl. Math., 236 (2012), 2167-2178. doi: 10.1016/j.cam.2011.09.039.

[20]

M. Li and Y. Yao, Strong convergence of an iterative algorithm for λ-strictly pseudocontractive mappings in Hilbert spaces, Analele Ştiinţifice ale Universitatii Ovidius Constanţa, Seria Mathematica, 18 (2010), 219-228.

[21]

G. LópezV. Martín-MárquezF. Wang and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problems, 28 (2012), 085004, 18 pp. doi: 10.1088/0266-5611/28/8/085004.

[22]

Y. Lou and M. Yan, Fast l1 - l2 Minimization via a proximal operator, arXiv: 1609. 09530.

[23]

P. E. Maingé, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007), 469-479. doi: 10.1016/j.jmaa.2005.12.066.

[24]

P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223-236. doi: 10.1016/j.cam.2007.07.021.

[25]

P. E. Maingé, Strong convergence of projected subgradientmethods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912. doi: 10.1007/s11228-008-0102-z.

[26]

A. Moudafi and A. Gibali, l1-l2 Regularization of split feasibility problems, Numer. Algorithms, (2017), 1-19. doi: 10.1007/s11075-017-0398-6.

[27]

T. L. N. Nguyen and Y. Shin, Deterministic sensing matrices in compressive sensing: A survey, Sci. World J., 2013 (2013), Article ID 192795, 6 pages. doi: 10.1155/2013/192795.

[28]

Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591-597. doi: 10.1090/S0002-9904-1967-11761-0.

[29]

Y. Shehu and O. S. Iyiola, Accelerated hybrid viscosity and steepest-descent method for proximal split feasibility problems, Optimization, 67 (2018), 475-492. doi: 10.1080/02331934.2017.1405955.

[30]

Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl., 19 (2017), 2483-2510. doi: 10.1007/s11784-017-0435-z.

[31]

S. SuantaiN. Pholasa and P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., (2017). doi: 10.3934/jimo.2018023.

[32]

R. Tibshirani, Regression shrinkage and selection Via the lasso, J. Royal Stat. Soc., 58 (1996), 267-288.

[33]

F. Wang and H.-K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74 (2011), 4105-4111. doi: 10.1016/j.na.2011.03.044.

[34]

F. Wang, Polyak's gradient method for split feasibility problem constrained by level sets, Numer. Algorithms, 77 (2018), 925-938. doi: 10.1007/s11075-017-0347-4.

[35]

H.-K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 26 (2010), 105018, 17 pp. doi: 10.1088/0266-5611/26/10/105018.

[36]

H.-K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256. doi: 10.1112/S0024610702003332.

[37]

Z. XuX. ChangF. Xu and H. Zhang, l1-2 Regularization: A thresholding representation theory and a fast solver, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 1013-1027.

[38]

Q. Yang, The relaxed CQ algorithm for solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266. doi: 10.1088/0266-5611/20/4/014.

[39]

H. Zhou and P. Wang, Adaptively relaxed algorithms for solving the split feasibility problem with a new step size, J. Inequal. Appl., 2014 (20214), 22pp. doi: 10.1186/1029-242X-2014-448.

Figure 1.  Numerical results for m = 210; n = 212; k = 20
Figure 2.  Numerical results for m = 210; n = 212; k = 40
Figure 3.  Numerical results for m = 212; n = 213; k = 50
Figure 4.  Parallelbeam geometry set-up: a set of parallel rays is shot through the object from different directions. These are typically coined as one projection. Two projections are illustrated above. (Left) Illustration of a single projection corresponding to a measurement along one ray. The image domain $\Omega$ is tiled into pixels or mathematically Haar-basis functions. Hence, a single projection corresponds to the line integral over a piecewise constant function
Figure 5.  Vessel test image from [4] (left). We illustrate how such a $32\times 32$ image is sampled (right) along $45$ parallel and equidistant lines that are all perpendicular to $\theta: = (\cos(30^\circ),\sin(30^\circ))^T$
Figure 6.  Reconstructing a binary test image $u\in \mathbb{R}^{64\times 64}$ from [4] representing a vascular system containing larger and smaller vessels. The results are for the recover $u$ from a $15$ (limited number of) tomographic projections
Table 1.  Numerical results obtained by Algorithm 1 compared with Lopez et al. algorithm [21] ((8)-(10)) and Zhou and Wang [39,Algorithm 3.1]
K and m, n Methods $\epsilon $=10-6
Iter fk (10) CPU time (sec.) $\frac{\|x^*-x^k\|}{\|x^0-x^{k+1}\|}$
K = 10 Algorithm 1 3310 2.23e - 5 3.3438 0.0033
m = 210 Lopez et al. [21] 3491 3.23e - 5 3.8125 0.0045
n = 212 Zhou and Wang [39] 3991 2.79e - 4 4.7438 0.0012
K = 20 Algorithm 1 7180 9.6601e - 13 5.08281 3.380e - 5
m = 210 Lopez et al. [21] 8901 7.6601e - 13 5.28281 3.271e - 5
n = 212 Zhou and Wang [39] 8180 8.4375e - 12 6.478 3.260e - 5
K = 50 Algorithm 1 8780 5.7301e - 10 12.3312 4.276e - 4
m = 212 Lopez et al. [21] 9901 6.6601e - 9 11.2761 4.238e - 4
n = 213 Zhou and Wang [39] 9180 7.251e - 10 11.453 3.457e - 4
K and m, n Methods $\epsilon $=10-6
Iter fk (10) CPU time (sec.) $\frac{\|x^*-x^k\|}{\|x^0-x^{k+1}\|}$
K = 10 Algorithm 1 3310 2.23e - 5 3.3438 0.0033
m = 210 Lopez et al. [21] 3491 3.23e - 5 3.8125 0.0045
n = 212 Zhou and Wang [39] 3991 2.79e - 4 4.7438 0.0012
K = 20 Algorithm 1 7180 9.6601e - 13 5.08281 3.380e - 5
m = 210 Lopez et al. [21] 8901 7.6601e - 13 5.28281 3.271e - 5
n = 212 Zhou and Wang [39] 8180 8.4375e - 12 6.478 3.260e - 5
K = 50 Algorithm 1 8780 5.7301e - 10 12.3312 4.276e - 4
m = 212 Lopez et al. [21] 9901 6.6601e - 9 11.2761 4.238e - 4
n = 213 Zhou and Wang [39] 9180 7.251e - 10 11.453 3.457e - 4
Table 2.  Numerical results obtained by Algorithm 1 compared with Lopez et al. algorithm [21] ((8)-(9)) and Zhou and Wang [39,Algorithm 3.1]
K and m, n Methods $ \epsilon$ = 10-6
Iter fk (10) CPU time (sec.) $\frac{\|x^*-x^k\|}{\|x^0-x^{k+1}\|}$
K = 916 Algorithm 1 87 37.6590 0.6406 65.7008
m = 1365 Lopez et al. [21] 100 49.3198 0.3541 38.2665
n = 4096 Zhou and Wang [39] 100 48.5597 0.6565 68.3321
K and m, n Methods $ \epsilon$ = 10-6
Iter fk (10) CPU time (sec.) $\frac{\|x^*-x^k\|}{\|x^0-x^{k+1}\|}$
K = 916 Algorithm 1 87 37.6590 0.6406 65.7008
m = 1365 Lopez et al. [21] 100 49.3198 0.3541 38.2665
n = 4096 Zhou and Wang [39] 100 48.5597 0.6565 68.3321
[1]

Suthep Suantai, Nattawut Pholasa, Prasit Cholamjiak. The modified inertial relaxed CQ algorithm for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1595-1615. doi: 10.3934/jimo.2018023

[2]

Yazheng Dang, Jie Sun, Honglei Xu. Inertial accelerated algorithms for solving a split feasibility problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1383-1394. doi: 10.3934/jimo.2016078

[3]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

[4]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[5]

Ai-Ling Yan, Gao-Yang Wang, Naihua Xiu. Robust solutions of split feasibility problem with uncertain linear operator. Journal of Industrial & Management Optimization, 2007, 3 (4) : 749-761. doi: 10.3934/jimo.2007.3.749

[6]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[7]

Zhao-Han Sheng, Tingwen Huang, Jian-Guo Du, Qiang Mei, Hui Huang. Study on self-adaptive proportional control method for a class of output models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 459-477. doi: 10.3934/dcdsb.2009.11.459

[8]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

[9]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure & Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[10]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

[11]

Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193

[12]

Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial & Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569

[13]

Katsuyuki Ishii, Takahiro Izumi. Remarks on the convergence of an algorithm for curvature-dependent motions of hypersurfaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1103-1125. doi: 10.3934/dcds.2018046

[14]

Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19

[15]

Aude Hofleitner, Tarek Rabbani, Mohammad Rafiee, Laurent El Ghaoui, Alex Bayen. Learning and estimation applications of an online homotopy algorithm for a generalization of the LASSO. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 503-523. doi: 10.3934/dcdss.2014.7.503

[16]

Zaki Chbani, Hassan Riahi. Weak and strong convergence of prox-penalization and splitting algorithms for bilevel equilibrium problems. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 353-366. doi: 10.3934/naco.2013.3.353

[17]

Qin Sheng, David A. Voss, Q. M. Khaliq. An adaptive splitting algorithm for the sine-Gordon equation. Conference Publications, 2005, 2005 (Special) : 792-797. doi: 10.3934/proc.2005.2005.792

[18]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[19]

Zheng-Hai Huang, Nan Lu. Global and global linear convergence of smoothing algorithm for the Cartesian $P_*(\kappa)$-SCLCP. Journal of Industrial & Management Optimization, 2012, 8 (1) : 67-86. doi: 10.3934/jimo.2012.8.67

[20]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (31)
  • HTML views (400)
  • Cited by (0)

Other articles
by authors

[Back to Top]