doi: 10.3934/jimo.2018078

Global error bounds for the tensor complementarity problem with a P-tensor

School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author: Zheng-Hai Huang

Received  September 2017 Revised  January 2018 Published  June 2018

Fund Project: The third author is supported by the National Natural Science Foundation of China (Grant No. 11431002)

As a natural extension of the linear complementarity problem, the tensor complementarity problem has been studied recently; and many theoretical results have been obtained. In this paper, we investigate the global error bound for the tensor complementarity problem with a P-tensor. We give two global error bounds for this class of complementarity problems with the help of two positively homogeneous operators defined by a P-tensor. When the order of the involved tensor reduces to 2, the results obtained in this paper coincide exactly with the one for the linear complementarity problem.

Citation: Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018078
References:
[1]

X. L. BaiZ. H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, Journal of Optimization Theory and Applications, 170 (2016), 72-84. doi: 10.1007/s10957-016-0903-4.

[2]

A. Berman and R. J. Plemmons, Nonnegative Matrix in the Mathematical Sciences, Society for Industrial and Applied Mathematics, Philadelphia, 1994. doi: 10.1137/1.9781611971262.

[3]

M. L. CheL. Qi and Y. M. Wei, Positive definite tensors to nonlinear complementarity problems, Journal of Optimization Theory and Applications, 168 (2016), 475-487. doi: 10.1007/s10957-015-0773-1.

[4]

T. T. ChenW. LiX. P. Wu and S. Vong, Error bounds for linear complementarity problems of MB-matrices, Numerical Algorithms, 70 (2015), 341-356. doi: 10.1007/s11075-014-9950-9.

[5]

X. Chen and S. Xiang, Computation of error bounds for P-matrix linear complementarity problems, Mathematical Programming, 106 (2006), 513-525. doi: 10.1007/s10107-005-0645-9.

[6]

X. Chen and S. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 1250-1265. doi: 10.1137/060653019.

[7]

R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.

[8]

P. F. Dai, Error bounds for linear complementarity problems of DB-matrices, Linear Algebra and its Applications, 434 (2011), 830-840. doi: 10.1016/j.laa.2010.09.049.

[9]

P. F. DaiY. T. Li and C. J. Lu, Error bounds for linear complementarity problems for SB-matrices, Numerical Algorithms, 61 (2012), 121-139. doi: 10.1007/s11075-012-9533-6.

[10]

P. F. DaiY. T. Li and C. J. Lu, New error bounds for linear complementarity problem with an SB-matrices, Numerical Algorithms, 64 (2013), 741-757. doi: 10.1007/s11075-012-9691-6.

[11]

L. Gao and C. Li, An improved error bound for linear complementarity problems for B-matrices, Journal of Inequalities and Applications, (2017), Paper No. 144, 10 pp. doi: 10.1186/s13660-017-1414-z.

[12]

M. García-Esnaola and J. M. Peña, Error bounds for linear complementarity problems for $B$-matrices, Applied Mathematics Letters, 22 (2009), 1071-1075. doi: 10.1016/j.aml.2008.09.001.

[13]

M. S. Gowda, Z. Y. Luo, L. Qi and N. H. Xiu, Z tensors and complementarity problems, arXiv: 1510.07933v2 (2016).

[14]

Q. Guo, M. M. Zheng and Z. H. Huang, Properties of S-tensor Linear and Multilinear Algebra, (2018). doi: 10.1080/03081087.2018.1430737.

[15]

Z. H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576. doi: 10.1007/s10589-016-9872-7.

[16]

Z. H. Huang, Y. Y. Suo and J. Wang, On $Q$-tensors, to appear in Pacific Journal of Optimization, arXiv: 1509.03088 (2015).

[17]

C. LiM. Gan and S. Yang, A new error bound for linear complementarity problems for B-matrices, Electronic Journal of Linear Algebra, 31 (2016), 476-484. doi: 10.13001/1081-3810.3250.

[18]

W. Li and H. Zheng, Some new error bounds for linear complementarity problems of H-matrices, Numerical Algorithms, 67 (2014), 257-269. doi: 10.1007/s11075-013-9786-8.

[19]

Z. Q. LuoO. L. MangasarianJ. Ren and M. V. Solodov, New error bounds for the linear complementarity problem, Mathematics of Operations Research, 19 (1994), 880-892. doi: 10.1287/moor.19.4.880.

[20]

Z. Y. LuoL. Qi and N. H. Xiu, The sparsest solutions to $Z$-tensor complementarity problems, Optimization Letters, 11 (2017), 471-482. doi: 10.1007/s11590-016-1013-9.

[21]

R. Mathias and J.-S. Pang, Error bounds for the linear complementarity problem with a P-matrix, Linear Algebra and its Applications, 132 (1990), 123-136. doi: 10.1016/0024-3795(90)90058-K.

[22]

K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.

[23]

L. Qi and Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial & Applied Mathematics, U. S. A, 2017. doi: 10.1137/1.9781611974751.ch1.

[24]

Y. S. Song and L. Qi, Properties of some classes of structured tensors, Journal of Optimization Theory and Applications, 165 (2015), 854-873. doi: 10.1007/s10957-014-0616-5.

[25]

Y. S. Song and L. Qi, Tensor complementarity problem and semi-positive tensors, Journal of Optimization Theory and Applications, 169 (2016), 1069-1078. doi: 10.1007/s10957-015-0800-2.

[26]

Y. S. Song and L. Qi, Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optimization Letters, 11 (2017), 1407-1426. doi: 10.1007/s11590-016-1104-7.

[27]

Y. S. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Annals of Applied Mathematics, 33 (2017), 308-323.

[28]

Y. S. Song and G. H. Yu, Properties of solution set of tensor complementarity problem, Journal of Optimization Theory and Applications, 170 (2016), 85-96. doi: 10.1007/s10957-016-0907-0.

[29]

Y. WangZ. H. Huang and X. L. Bai, Exceptionally regular tensors and tensor complementarity problems, Optimization Methods and Software, 31 (2016), 815-828. doi: 10.1080/10556788.2016.1180386.

[30]

W. Yu, C. Ling, H. J. He and L. Qi, On the properties of tensor complementarity problems, arXiv: 1608.01735v1 (2016).

[31]

P. Z. Yuan and L. H. You, Some remarks on P, P0, B and B0 tensors, Linear Algebra and its Applications, 459 (2014), 511-521. doi: 10.1016/j.laa.2014.07.043.

show all references

References:
[1]

X. L. BaiZ. H. Huang and Y. Wang, Global uniqueness and solvability for tensor complementarity problems, Journal of Optimization Theory and Applications, 170 (2016), 72-84. doi: 10.1007/s10957-016-0903-4.

[2]

A. Berman and R. J. Plemmons, Nonnegative Matrix in the Mathematical Sciences, Society for Industrial and Applied Mathematics, Philadelphia, 1994. doi: 10.1137/1.9781611971262.

[3]

M. L. CheL. Qi and Y. M. Wei, Positive definite tensors to nonlinear complementarity problems, Journal of Optimization Theory and Applications, 168 (2016), 475-487. doi: 10.1007/s10957-015-0773-1.

[4]

T. T. ChenW. LiX. P. Wu and S. Vong, Error bounds for linear complementarity problems of MB-matrices, Numerical Algorithms, 70 (2015), 341-356. doi: 10.1007/s11075-014-9950-9.

[5]

X. Chen and S. Xiang, Computation of error bounds for P-matrix linear complementarity problems, Mathematical Programming, 106 (2006), 513-525. doi: 10.1007/s10107-005-0645-9.

[6]

X. Chen and S. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 1250-1265. doi: 10.1137/060653019.

[7]

R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, 1992.

[8]

P. F. Dai, Error bounds for linear complementarity problems of DB-matrices, Linear Algebra and its Applications, 434 (2011), 830-840. doi: 10.1016/j.laa.2010.09.049.

[9]

P. F. DaiY. T. Li and C. J. Lu, Error bounds for linear complementarity problems for SB-matrices, Numerical Algorithms, 61 (2012), 121-139. doi: 10.1007/s11075-012-9533-6.

[10]

P. F. DaiY. T. Li and C. J. Lu, New error bounds for linear complementarity problem with an SB-matrices, Numerical Algorithms, 64 (2013), 741-757. doi: 10.1007/s11075-012-9691-6.

[11]

L. Gao and C. Li, An improved error bound for linear complementarity problems for B-matrices, Journal of Inequalities and Applications, (2017), Paper No. 144, 10 pp. doi: 10.1186/s13660-017-1414-z.

[12]

M. García-Esnaola and J. M. Peña, Error bounds for linear complementarity problems for $B$-matrices, Applied Mathematics Letters, 22 (2009), 1071-1075. doi: 10.1016/j.aml.2008.09.001.

[13]

M. S. Gowda, Z. Y. Luo, L. Qi and N. H. Xiu, Z tensors and complementarity problems, arXiv: 1510.07933v2 (2016).

[14]

Q. Guo, M. M. Zheng and Z. H. Huang, Properties of S-tensor Linear and Multilinear Algebra, (2018). doi: 10.1080/03081087.2018.1430737.

[15]

Z. H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576. doi: 10.1007/s10589-016-9872-7.

[16]

Z. H. Huang, Y. Y. Suo and J. Wang, On $Q$-tensors, to appear in Pacific Journal of Optimization, arXiv: 1509.03088 (2015).

[17]

C. LiM. Gan and S. Yang, A new error bound for linear complementarity problems for B-matrices, Electronic Journal of Linear Algebra, 31 (2016), 476-484. doi: 10.13001/1081-3810.3250.

[18]

W. Li and H. Zheng, Some new error bounds for linear complementarity problems of H-matrices, Numerical Algorithms, 67 (2014), 257-269. doi: 10.1007/s11075-013-9786-8.

[19]

Z. Q. LuoO. L. MangasarianJ. Ren and M. V. Solodov, New error bounds for the linear complementarity problem, Mathematics of Operations Research, 19 (1994), 880-892. doi: 10.1287/moor.19.4.880.

[20]

Z. Y. LuoL. Qi and N. H. Xiu, The sparsest solutions to $Z$-tensor complementarity problems, Optimization Letters, 11 (2017), 471-482. doi: 10.1007/s11590-016-1013-9.

[21]

R. Mathias and J.-S. Pang, Error bounds for the linear complementarity problem with a P-matrix, Linear Algebra and its Applications, 132 (1990), 123-136. doi: 10.1016/0024-3795(90)90058-K.

[22]

K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.

[23]

L. Qi and Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial & Applied Mathematics, U. S. A, 2017. doi: 10.1137/1.9781611974751.ch1.

[24]

Y. S. Song and L. Qi, Properties of some classes of structured tensors, Journal of Optimization Theory and Applications, 165 (2015), 854-873. doi: 10.1007/s10957-014-0616-5.

[25]

Y. S. Song and L. Qi, Tensor complementarity problem and semi-positive tensors, Journal of Optimization Theory and Applications, 169 (2016), 1069-1078. doi: 10.1007/s10957-015-0800-2.

[26]

Y. S. Song and L. Qi, Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optimization Letters, 11 (2017), 1407-1426. doi: 10.1007/s11590-016-1104-7.

[27]

Y. S. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Annals of Applied Mathematics, 33 (2017), 308-323.

[28]

Y. S. Song and G. H. Yu, Properties of solution set of tensor complementarity problem, Journal of Optimization Theory and Applications, 170 (2016), 85-96. doi: 10.1007/s10957-016-0907-0.

[29]

Y. WangZ. H. Huang and X. L. Bai, Exceptionally regular tensors and tensor complementarity problems, Optimization Methods and Software, 31 (2016), 815-828. doi: 10.1080/10556788.2016.1180386.

[30]

W. Yu, C. Ling, H. J. He and L. Qi, On the properties of tensor complementarity problems, arXiv: 1608.01735v1 (2016).

[31]

P. Z. Yuan and L. H. You, Some remarks on P, P0, B and B0 tensors, Linear Algebra and its Applications, 459 (2014), 511-521. doi: 10.1016/j.laa.2014.07.043.

[1]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-15. doi: 10.3934/jimo.2018049

[2]

Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial & Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53

[3]

Jie Zhang, Yue Wu, Liwei Zhang. A class of smoothing SAA methods for a stochastic linear complementarity problem. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 145-156. doi: 10.3934/naco.2012.2.145

[4]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[5]

Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775

[6]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[7]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

[8]

Xin-He Miao, Jein-Shan Chen. Error bounds for symmetric cone complementarity problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 627-641. doi: 10.3934/naco.2013.3.627

[9]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[10]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[11]

Jinchuan Zhou, Naihua Xiu, Jein-Shan Chen. Solution properties and error bounds for semi-infinite complementarity problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 99-115. doi: 10.3934/jimo.2013.9.99

[12]

Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061

[13]

Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial & Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153

[14]

Alessandro Fonda, Rafael Ortega. Positively homogeneous equations in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 475-482. doi: 10.3934/dcds.2000.6.475

[15]

Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185

[16]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[17]

Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial & Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271

[18]

Behrouz Kheirfam. A weighted-path-following method for symmetric cone linear complementarity problems. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 141-150. doi: 10.3934/naco.2014.4.141

[19]

Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030

[20]

Qiyu Wang, Hailin Sun. Sparse markowitz portfolio selection by using stochastic linear complementarity approach. Journal of Industrial & Management Optimization, 2018, 14 (2) : 541-559. doi: 10.3934/jimo.2017059

2017 Impact Factor: 0.994

Article outline

[Back to Top]