doi: 10.3934/jimo.2018068

Selection of DRX scheme for voice traffic in LTE-A networks: Markov modeling and performance analysis

Department of Mathematics, IIT Delhi, New Delhi 110016, India

* Corresponding author: Selvamuthu Dharmaraja

Received  August 2016 Revised  November 2017 Published  June 2018

Power saving is a leading issue in the User Equipment (UE) for limited source of power in Long Term Evolution-Advanced (LTE-A) networks. Battery power of an UE gets exhaust quickly due to the heavy use of many service applications and large data transmission. Discontinuous reception (DRX) is a mechanism used for power saving in UE in the LTE-A networks. There are scope of improvements in conventional DRX scheme in LTE-A networks for voice communication. In this paper, a DRX scheme is chosen by selecting optimal parameters of DRX scheme, while keeping Quality of Service (QoS) delay requirements. Further, delay analysis for first downlink packet is performed. Moreover, expressions for delay distribution and expected delay of any downlink packet, are obtained and represented graphically. Based on analytical model, the trade-off relationship between the power saving and queueing delay is investigated.

Citation: Anupam Gautam, Selvamuthu Dharmaraja. Selection of DRX scheme for voice traffic in LTE-A networks: Markov modeling and performance analysis. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018068
References:
[1]

S. Baek and B. D. Choi, Analysis of discontinuous reception (DRX) with both downlink and uplink packet arrivals in 3GPP LTE, In Proceedings of the 6th International Conference on Queueing Theory and Network Applications, (2011), 8–16.

[2]

S. Baek and B. D. Choi, Analysis of discontinuous reception with both downlink and uplink packet arrivals in 3GPP LTE, Journal of Industrial and Management Optimization, 8 (2012), 841-860. doi: 10.3934/jimo.2012.8.841.

[3]

P. T. Brady, A model for generating on-off speech patterns in two-way conversation, Bell System Technical Journal, 48 (1969), 2445-2472.

[4]

T. K. ChengJ. L. C. WuF. M. Yang and J. S. Leu, IEEE 802.16 e/m energy-efficient sleep-mode operation with delay limitation in multibroadcast services, International Journal of Communication Systems, 27 (2014), 45-67.

[5]

S. Flower, R. S. Bhamber and A. Mellouk, Analysis of adjustable and fixed DRX mechanism for power saving in LTE/LTE-Advanced, In Proceedings of IEEE International Conference on Communications (ICC), (2012), 1964–1969.

[6]

H. Heffes and D. Lucantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance, IEEE Journal on Selected Areas in Communications, 4 (1986), 856-868.

[7]

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen and O. Spatscheck, A close examination of performance and power characteristics of 4G LTE networks, In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, (2012), 225-238.

[8]

E. HwangY. H. LeeK. J. KimJ. J. Son and B. D. Choi, Performance analysis of power saving mechanism employing both sleep mode and idle mode in IEEE 802.16 e, IEICE Transactions on Communications, 92 (2009), 2809-2822.

[9]

E. HwangK. J. KimJ. J. Son and B. D. Choi, The power-saving mechanism with periodic traffic indications in the IEEE 802.16 e/m, IEEE Transactions on Vehicular Technology, 59 (2010), 319-334.

[10]

E. HwangK. J. Kim and B. D. Choi, Performance Analysis of Power Saving Class of Type Ⅰ for Voice Service in Two-Way Communication in IEEE 802.16 e, IEICE Transactions on Communications, 95 (2012), 845-856.

[11]

M. J. Karam and F. A. Tobagi, Analysis of the delay and jitter of voice traffic over the internet, In Proceedings of IEEE Twentieth Annual Joint Conference of The IEEE Computer and Communications Societies(ICCS), 2 (2001), 824–833.

[12]

L. KongG. K. W. Wong and D. H. K. Tsang, Performance study and system optimization on sleep mode operation in IEEE 802.16 e, IEEE Transactions on Wireless Communications, 8 (2009), 4518-4528.

[13]

Y. Y. Mihov, K. M. Kassev and B. P. Tsankov, Analysis and performance evaluation of the DRX mechanism for power saving in LTE, In Proceedings of IEEE 26th Convention of In Electrical and Electronics Engineers in Israel (IEEEI), (2014), 520–524.

[14]

Rumney and Moray, LTE and the Evolution to 4G Wireless: Design and Measurement Challenges, John Wiley & Sons, 2014.

[15]

G. Stea and A. Virdis, A Comprehensive Simulation Analysis of LTE Discontinuous Reception (DRX), Computer Networks, 73 (2014), 22-40. doi: 10.1016/j.comnet.2014.07.014.

[16]

H. P. SternS. A. Mahmoud and K. K. Wong, A model for generating on-off patterns in conversational speech, including short silence gaps and the effects of interaction between parties, IEEE Transactions on Vehicular Technology, 43 (1994), 1094-1100.

[17]

Y. Xiao, Energy saving mechanism in the IEEE 802.16 e wireless MAN, IEEE Communications Letters, 9 (2005), 595-597.

[18]

Y. Xiao, Performance analysis of an energy saving mechanism in the IEEE 802. 16 e wireless MAN, In Proceedings of 3rd IEEE In Consumer Communications and Networking Conference (CCNC), (2006), 406–410.

[19]

C. C. YangJ. Y. ChenY. T. Mai and H. H. Liu, Integrated power saving for relay node and user equipment in LTE-A, International Journal of Communication Systems, 29 (2016), 1342-1364.

[20]

F. ZaraiK. B. AliM. S. Obaidat and L. Kamoun, Adaptive call admission control in 3GPP LTE networks, International Journal of Communication Systems, 27 (2014), 1522-1534.

[21]

Y. ZhangY. Xiao and V. C. M. Leung, Energy management analysis and enhancement in IEEE 802.16 e WirelessMAN, IEEE Transactions on Vehicular Technology, 58 (2009), 3738-3752.

[22]

L. Zhou, H. Xu, H. Tian, Y. Gao, L. Du and L. Chen, Performance analysis of power saving mechanism with adjustable DRX cycles in 3GPP LTE, In Proceedings of IEEE 68th Vehicular Technology Conference, (2008), 1–5.

[23]

F. ZhuW. Yiqun and Z. Niu, Delay analysis for sleep-based power saving mechanisms with downlink and uplink traffic, IEEE Communications Letters, 13 (2009), 615-617.

show all references

References:
[1]

S. Baek and B. D. Choi, Analysis of discontinuous reception (DRX) with both downlink and uplink packet arrivals in 3GPP LTE, In Proceedings of the 6th International Conference on Queueing Theory and Network Applications, (2011), 8–16.

[2]

S. Baek and B. D. Choi, Analysis of discontinuous reception with both downlink and uplink packet arrivals in 3GPP LTE, Journal of Industrial and Management Optimization, 8 (2012), 841-860. doi: 10.3934/jimo.2012.8.841.

[3]

P. T. Brady, A model for generating on-off speech patterns in two-way conversation, Bell System Technical Journal, 48 (1969), 2445-2472.

[4]

T. K. ChengJ. L. C. WuF. M. Yang and J. S. Leu, IEEE 802.16 e/m energy-efficient sleep-mode operation with delay limitation in multibroadcast services, International Journal of Communication Systems, 27 (2014), 45-67.

[5]

S. Flower, R. S. Bhamber and A. Mellouk, Analysis of adjustable and fixed DRX mechanism for power saving in LTE/LTE-Advanced, In Proceedings of IEEE International Conference on Communications (ICC), (2012), 1964–1969.

[6]

H. Heffes and D. Lucantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance, IEEE Journal on Selected Areas in Communications, 4 (1986), 856-868.

[7]

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen and O. Spatscheck, A close examination of performance and power characteristics of 4G LTE networks, In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, (2012), 225-238.

[8]

E. HwangY. H. LeeK. J. KimJ. J. Son and B. D. Choi, Performance analysis of power saving mechanism employing both sleep mode and idle mode in IEEE 802.16 e, IEICE Transactions on Communications, 92 (2009), 2809-2822.

[9]

E. HwangK. J. KimJ. J. Son and B. D. Choi, The power-saving mechanism with periodic traffic indications in the IEEE 802.16 e/m, IEEE Transactions on Vehicular Technology, 59 (2010), 319-334.

[10]

E. HwangK. J. Kim and B. D. Choi, Performance Analysis of Power Saving Class of Type Ⅰ for Voice Service in Two-Way Communication in IEEE 802.16 e, IEICE Transactions on Communications, 95 (2012), 845-856.

[11]

M. J. Karam and F. A. Tobagi, Analysis of the delay and jitter of voice traffic over the internet, In Proceedings of IEEE Twentieth Annual Joint Conference of The IEEE Computer and Communications Societies(ICCS), 2 (2001), 824–833.

[12]

L. KongG. K. W. Wong and D. H. K. Tsang, Performance study and system optimization on sleep mode operation in IEEE 802.16 e, IEEE Transactions on Wireless Communications, 8 (2009), 4518-4528.

[13]

Y. Y. Mihov, K. M. Kassev and B. P. Tsankov, Analysis and performance evaluation of the DRX mechanism for power saving in LTE, In Proceedings of IEEE 26th Convention of In Electrical and Electronics Engineers in Israel (IEEEI), (2014), 520–524.

[14]

Rumney and Moray, LTE and the Evolution to 4G Wireless: Design and Measurement Challenges, John Wiley & Sons, 2014.

[15]

G. Stea and A. Virdis, A Comprehensive Simulation Analysis of LTE Discontinuous Reception (DRX), Computer Networks, 73 (2014), 22-40. doi: 10.1016/j.comnet.2014.07.014.

[16]

H. P. SternS. A. Mahmoud and K. K. Wong, A model for generating on-off patterns in conversational speech, including short silence gaps and the effects of interaction between parties, IEEE Transactions on Vehicular Technology, 43 (1994), 1094-1100.

[17]

Y. Xiao, Energy saving mechanism in the IEEE 802.16 e wireless MAN, IEEE Communications Letters, 9 (2005), 595-597.

[18]

Y. Xiao, Performance analysis of an energy saving mechanism in the IEEE 802. 16 e wireless MAN, In Proceedings of 3rd IEEE In Consumer Communications and Networking Conference (CCNC), (2006), 406–410.

[19]

C. C. YangJ. Y. ChenY. T. Mai and H. H. Liu, Integrated power saving for relay node and user equipment in LTE-A, International Journal of Communication Systems, 29 (2016), 1342-1364.

[20]

F. ZaraiK. B. AliM. S. Obaidat and L. Kamoun, Adaptive call admission control in 3GPP LTE networks, International Journal of Communication Systems, 27 (2014), 1522-1534.

[21]

Y. ZhangY. Xiao and V. C. M. Leung, Energy management analysis and enhancement in IEEE 802.16 e WirelessMAN, IEEE Transactions on Vehicular Technology, 58 (2009), 3738-3752.

[22]

L. Zhou, H. Xu, H. Tian, Y. Gao, L. Du and L. Chen, Performance analysis of power saving mechanism with adjustable DRX cycles in 3GPP LTE, In Proceedings of IEEE 68th Vehicular Technology Conference, (2008), 1–5.

[23]

F. ZhuW. Yiqun and Z. Niu, Delay analysis for sleep-based power saving mechanisms with downlink and uplink traffic, IEEE Communications Letters, 13 (2009), 615-617.

Figure 1.  Basic structure of DRX scheme
Figure 2.  One-way communication ON-OFF model for voice traffic
Figure 3.  State transition diagram for two-way communication
Figure 4.  Packet arrival in one-way communication voice traffic
Figure 5.  Frame structure and DRX cycle in LTE-A networks
Figure 6.  When sleep period is terminated by a packet
Figure 7.  Trade-off between expected delay and time
Table 1.  List of transition rates per second
$\alpha_{1,4}$ $\alpha_{1,7}$ $\alpha_{3,1}$ $\alpha_{2,1}$ $\alpha_{7,1}$ $\alpha_{4,1}$ $\alpha_{5,1}$ $\alpha_{1,2}$, $\alpha_{7,2}$
$\alpha_{6,5}$ $\alpha_{6,8}$ $\alpha_{2,6}$ $\alpha_{3,6}$ $\alpha_{8,6}$ $\alpha_{5,6}$ $\alpha_{4,6}$ $\alpha_{6,3}$, $\alpha_{8,3}$
$0.833$ $5.489$ $2.157$ $2.324$ $27.62$ $ 2.222$ $ 1.044$ $~0.278$
$\alpha_{1,4}$ $\alpha_{1,7}$ $\alpha_{3,1}$ $\alpha_{2,1}$ $\alpha_{7,1}$ $\alpha_{4,1}$ $\alpha_{5,1}$ $\alpha_{1,2}$, $\alpha_{7,2}$
$\alpha_{6,5}$ $\alpha_{6,8}$ $\alpha_{2,6}$ $\alpha_{3,6}$ $\alpha_{8,6}$ $\alpha_{5,6}$ $\alpha_{4,6}$ $\alpha_{6,3}$, $\alpha_{8,3}$
$0.833$ $5.489$ $2.157$ $2.324$ $27.62$ $ 2.222$ $ 1.044$ $~0.278$
Table 2.  Parameters in DRX Scheme
Parameters Details
Half frame Duration (ms) $5$
Duplexing TDD
cDRX ON duration timer (ms) $1$
DRX inactivity timer period (ms) $0-100$
Short DRX cycle length (ms) $20$
Long DRX cycle length (ms) $40-100$
Average silence period (ms)
(in one-way communication)
$650$
Average talking period (ms)
(in one-way communication)
$350$
Power consumption in awake mode (mJ/ms) $0.24$
Power consumption in sleep mode (mJ/ms) $0.02$
Additional energy consumption(${\mu}J$) $0.2$
Parameters Details
Half frame Duration (ms) $5$
Duplexing TDD
cDRX ON duration timer (ms) $1$
DRX inactivity timer period (ms) $0-100$
Short DRX cycle length (ms) $20$
Long DRX cycle length (ms) $40-100$
Average silence period (ms)
(in one-way communication)
$650$
Average talking period (ms)
(in one-way communication)
$350$
Power consumption in awake mode (mJ/ms) $0.24$
Power consumption in sleep mode (mJ/ms) $0.02$
Additional energy consumption(${\mu}J$) $0.2$
Table 3.  Number of sleep cycles exhausted in state $S_i$
$\tau_{1}$ $\tau_{2}$ $\tau_{4}$ $\tau_{7}$
$\tau_{6}$ $\tau_{3}$ $\tau_{5}$ $\tau_{8}$
$7$ $11$ $6$ $ 0 $
$\tau_{1}$ $\tau_{2}$ $\tau_{4}$ $\tau_{7}$
$\tau_{6}$ $\tau_{3}$ $\tau_{5}$ $\tau_{8}$
$7$ $11$ $6$ $ 0 $
Table 4.  Limiting probabilities
$\pi_{1}$ $\pi_{2}$ $\pi_{4}$ $\pi_{7}$
$\pi_{6}$ $\pi_{3}$ $\pi_{5}$ $\pi_{8}$
$0.3289 $ $0.0236$ $0.0839$ $0.06472$
$\pi_{1}$ $\pi_{2}$ $\pi_{4}$ $\pi_{7}$
$\pi_{6}$ $\pi_{3}$ $\pi_{5}$ $\pi_{8}$
$0.3289 $ $0.0236$ $0.0839$ $0.06472$
Table 5.  Power saving percentage comparison for DRX scheme in one-way and two-way voice
Length of Long DRX cycle(ms) One-way $P_{0}$
$(\%)$
Two-way $P_{L}$
$~(\%)$
$40$ $81.96$ $74.78$
$60$ $84.31$ $75.0041$
$80$ $85.75$ $75.12$
$100$ $86.72$ $75.19$
Length of Long DRX cycle(ms) One-way $P_{0}$
$(\%)$
Two-way $P_{L}$
$~(\%)$
$40$ $81.96$ $74.78$
$60$ $84.31$ $75.0041$
$80$ $85.75$ $75.12$
$100$ $86.72$ $75.19$
[1]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139

[2]

Sangkyu Baek, Bong Dae Choi. Analysis of discontinuous reception with both downlink and uplink packet arrivals in 3GPP LTE. Journal of Industrial & Management Optimization, 2012, 8 (4) : 841-860. doi: 10.3934/jimo.2012.8.841

[3]

Shunfu Jin, Wuyi Yue, Xuena Yan. Performance evaluation of a power saving mechanism in IEEE 802.16 wireless MANs with bi-directional traffic. Journal of Industrial & Management Optimization, 2011, 7 (3) : 717-733. doi: 10.3934/jimo.2011.7.717

[4]

Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849

[5]

Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057

[6]

Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure & Applied Analysis, 2003, 2 (2) : 187-209. doi: 10.3934/cpaa.2003.2.187

[7]

Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465

[8]

Florent Berthelin, Damien Broizat. A model for the evolution of traffic jams in multi-lane. Kinetic & Related Models, 2012, 5 (4) : 697-728. doi: 10.3934/krm.2012.5.697

[9]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[10]

Simone Göttlich, Stephan Martin, Thorsten Sickenberger. Time-continuous production networks with random breakdowns. Networks & Heterogeneous Media, 2011, 6 (4) : 695-714. doi: 10.3934/nhm.2011.6.695

[11]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[12]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[13]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[14]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[15]

Tyson Loudon, Stephen Pankavich. Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences & Engineering, 2017, 14 (3) : 709-733. doi: 10.3934/mbe.2017040

[16]

M. Hadjiandreou, Raul Conejeros, Vassilis S. Vassiliadis. Towards a long-term model construction for the dynamic simulation of HIV infection. Mathematical Biosciences & Engineering, 2007, 4 (3) : 489-504. doi: 10.3934/mbe.2007.4.489

[17]

Xiaoying Han, Peter E. Kloeden, Basiru Usman. Long term behavior of a random Hopfield neural lattice model. Communications on Pure & Applied Analysis, 2019, 18 (2) : 809-824. doi: 10.3934/cpaa.2019039

[18]

C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139

[19]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[20]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018272

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (25)
  • HTML views (472)
  • Cited by (0)

Other articles
by authors

[Back to Top]