• Previous Article
    Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach
  • JIMO Home
  • This Issue
  • Next Article
    An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty
doi: 10.3934/jimo.2018063

Sufficiency and duality in non-smooth interval valued programming problems

1. 

Department of Applied Sciences, NITTTR (under Ministry of HRD, Govt. of India), Bhopal, M.P., India

2. 

Department of Mathematics, Rajiv Gandhi Proudyogiki Vishwavidyalaya, (State Technological University of M.P.), Bhopal, M.P., India

3. 

Department of Applied Mathematics, Pukyong National University, Busan, Korea

* Corresponding author: Do Sang Kim

Received  October 2015 Revised  March 2018 Published  June 2018

In this paper a non-smooth optimization problem is studied in an uncertain environment. The objective function of this problem is interval valued function. We introduce the class of $LU-(p,r)-[ρ^L,ρ^U]-(η, θ)$-invex interval valued functions about the Clarke generalized gradient. Then, through non trivial examples, we illustrate that the class of functions introduced exists. Based upon the proposed invexity assumptions, the sufficient optimality conditions are established. Further, we derive weak, strong and strict converse duality theorems for Mond-Weir type and Wolfe type dual programs. Some examples are also given in order to illustrate our results.

Citation: Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018063
References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138. doi: 10.2298/FIL1608121A.

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379. doi: 10.1006/jmaa.2001.7574.

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387. doi: 10.1287/mnsc.16.5.374.

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288. doi: 10.1007/s00186-012-0399-0.

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322. doi: 10.1007/s10700-013-9156-y.

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550. doi: 10.1016/0022-247X(81)90123-2.

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127. doi: 10.1016/j.amc.2011.09.041.

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386. doi: 10.2298/YJOR130131012J.

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13. doi: 10.1016/j.ejor.2007.03.031.

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148. doi: 10.1016/j.amc.2011.02.068.

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142. doi: 10.3934/jimo.2013.9.131.

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30. doi: 10.1109/CSAE.2012.6272900.

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091. doi: 10.1007/s11590-013-0640-7.

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59. doi: 10.1016/j.ejor.2005.09.007.

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316. doi: 10.1016/j.jmaa.2007.05.023.

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509. doi: 10.1007/s10957-008-9396-0.

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60. doi: 10.1016/j.ejor.2008.03.012.

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355. doi: 10.1016/0022-247X(90)90217-4.

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631. doi: 10.1007/s11590-012-0601-6.

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323. doi: 10.1007/978-3-642-03664-4_140.

show all references

References:
[1]

I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. Inequal. Appl., 2013 (2013), 14pp. doi: 10.1186/1029-242X-2013-313.

[2]

I. AhmadD. Singh and B. Ahmad, Optimality conditions for invex interval-valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138. doi: 10.2298/FIL1608121A.

[3]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybern., 44 (2015), 19-45.

[4]

T. Antczak, $(p, r)$-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379. doi: 10.1006/jmaa.2001.7574.

[5]

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming, Manage. Sci., 16 (1969/1970), 374-387. doi: 10.1287/mnsc.16.5.374.

[6]

A. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273-288. doi: 10.1007/s00186-012-0399-0.

[7]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Ma., 12 (2013), 305-322. doi: 10.1007/s10700-013-9156-y.

[8]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New-York, 1983.

[9]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545-550. doi: 10.1016/0022-247X(81)90123-2.

[10]

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res., 48 (1990), 219-225.

[11]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 14 (2014), 71-85.

[12]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127. doi: 10.1016/j.amc.2011.09.041.

[13]

A. JayswalA. K. Prasad and I. Stancu-Minasian, On nonsmooth multiobjective fractional programming problems involving $(p, r)-ρ- (η, θ)$ -invex functions, Yugosl. J. Oper. Res., 23 (2013), 367-386. doi: 10.2298/YJOR130131012J.

[14]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res., 188 (2008), 1-13. doi: 10.1016/j.ejor.2007.03.031.

[15]

P. Mandal and C. Nahak, Symmetric duality with $(p, r)-ρ-(η, θ)$-invexity, Appl. Math. Comput., 217 (2011), 8141-8148. doi: 10.1016/j.amc.2011.02.068.

[16]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonl. Anal. Optim., 5 (2014), 91-103.

[17]

Y. Sun and L. Wang, Optimality conditions and duality in nondifferentiable interval valued programming, J. Ind. Manag. Optim., 9 (2013), 131-142. doi: 10.3934/jimo.2013.9.131.

[18]

Y. Sun and L. Wang, Mond Weir's type duality for interval valued programming, Computer Science and Automation Engineering (CSAE), IEEE International Conference, 3 (2012), 27-30. doi: 10.1109/CSAE.2012.6272900.

[19]

Y. SunX. Xu and L. Wang, Duality and saddle point type optimality for interval valued programming, Optim. Lett., 8 (2014), 1077-1091. doi: 10.1007/s11590-013-0640-7.

[20]

H. C. Wu, The Karush Kuhn Tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res., 176 (2007), 46-59. doi: 10.1016/j.ejor.2005.09.007.

[21]

H. C. Wu, On interval valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316. doi: 10.1016/j.jmaa.2007.05.023.

[22]

H. C. Wu, Wolfe duality for interval valued optimization, J. Optimiz. Theory App., 138 (2008), 497-509. doi: 10.1007/s10957-008-9396-0.

[23]

H. C. Wu, The Karush Kuhn Tucker optimality conditions in a multiobjective programming problem with interval valued objective functions, Eur. J. Oper. Res., 196 (2009), 49-60. doi: 10.1016/j.ejor.2008.03.012.

[24]

G. J. Zalmai, Generalized sufficiency criteria in continuous-time programming with application to a class of variational-type inequalities, J. Math. Anal. Appl., 153 (1990), 331-355. doi: 10.1016/0022-247X(90)90217-4.

[25]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631. doi: 10.1007/s11590-012-0601-6.

[26]

J. Zhang, Optimality condition and wolfe duality for invex interval-valued nonlinear programming problems, J. Appl. Math., (2013), Article ID 641345, 11 pages.

[27]

H. C. Zhou and Y. J. Wang, Optimality conditions and mixed duality for interval valued optimization, Fuzzy Info. and Eng., 2 (2009), 1315-1323. doi: 10.1007/978-3-642-03664-4_140.

Table 1.  Summary of Example 7.1 and Remark 7.2
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
Functions Valued of $\rho$ Domain
$f^L(x)$ $\rho^L=\frac{-0.1}{|x+0.01|^4}$ $x\in (-0.4599,1.0766)$
$f^U(x)$ $\rho^U=\frac{-0.09}{|x+0.01|^4}$ $x\in (-0.2362,1.1438)$
$\sum_{j=1}^2\mu_jg_j(x)$ $\rho=4$ $x\in (-0.5172,0.5172)$
$[f^L(x),f^U(x)]$ $[\rho^L,\rho^U]=\left[\frac{-0.1}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-0.4599,1.0766)\cap (-0.2362,1.1438)$
$f^L_0(x)$ $\rho^L_0=\frac{-0.13}{|x+0.01|^4}$ $x\in(-1.0567,1.0567)$
$[f^L_0(x),f^U(x)]$ $[\rho^L_0,\rho^U]=\left[\frac{-0.13}{|x+0.01|^4},\frac{-0.09}{|x+0.01|^4}\right]$ $x\in(-1.0567,1.0567)\cap(-0.2362,1.1438)$
[1]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[2]

Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[3]

Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

[4]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[5]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[6]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[7]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[8]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[9]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2018, 8 (0) : 1-38. doi: 10.3934/mcrf.2019001

[10]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[11]

Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059

[12]

Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012

[13]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[14]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[15]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[16]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[17]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[18]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[19]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[20]

Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]