• Previous Article
    Evaluation strategy and mass balance for making decision about the amount of aluminum fluoride addition based on superheat degree
  • JIMO Home
  • This Issue
  • Next Article
    Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching
doi: 10.3934/jimo.2018058

An uncertain programming model for single machine scheduling problem with batch delivery

School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

* Corresponding author: Yuanguo Zhu

Received  August 2017 Revised  January 2018 Published  April 2018

A single machine scheduling problem with batch delivery is studied in this paper. The objective is to minimize the total cost which comprises earliness penalties, tardiness penalties, holding and transportation costs. An integer programming model is proposed and two dominance properties are obtained. However, sometimes due to the lack of historical data, the worker evaluates the processing time of a job according to his past experience. A pessimistic value model of the single machine scheduling problem with batch delivery under an uncertain environment is presented. Since the objective function is non-monotonic with respect to uncertain variables, a hybrid algorithm based on uncertain simulation and a g#enetic algorithm (GA) is designed to solve the model. In addition, two dominance properties under the uncertain environment are also obtained. Finally, computational experiments are presented to illustrate the modeling idea and the effectiveness of the algorithm.

Citation: Jiayu Shen, Yuanguo Zhu. An uncertain programming model for single machine scheduling problem with batch delivery. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018058
References:
[1]

E. CakiciS. Mason and M. Kurz, Multi-objective analysis of an integrated supply chain scheduling problem, International Journal of Production Research, 50 (2012), 2624-2638.

[2]

Y. Chen and Y. Zhu, Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems Journal of Industrial and Management Optimization, to appear. doi: 10.3934/jimo.2017082.

[3]

T. ChengV. Gordon and M. Kovalyov, Single machine scheduling with batch deliveries, European Journal of Operational Research, 94 (1996), 227-283.

[4]

Q. Cui and Y. Sheng, Uncertain programming model for solid transportation problem, Information: An International Interdisciplinary Journal, 16 (2013), 1207-1214.

[5]

J. Framinan and P. Gonzalez, On heuristic solutions for the stochastic flow shop scheduling problem, European Journal of Operational Research, 246 (2015), 413-420. doi: 10.1016/j.ejor.2015.05.006.

[6]

B. FuY. Huo and H. Zhao, Coordinated scheduling of production and delivery with production window and delivery capacity constraints, Theoretical Computer Science, 422 (2012), 39-51. doi: 10.1016/j.tcs.2011.11.035.

[7]

Y. Gao, Shortest path problem with uncertain arc lengths, Computers & Mathematics with Applications, 62 (2011), 2591-2600. doi: 10.1016/j.camwa.2011.07.058.

[8]

Y. GaoL. Yang and S. Li, Uncertain Models on railway transportation planning problem, Applied Mathematical Modelling, 40 (2016), 4921-4934. doi: 10.1016/j.apm.2015.12.016.

[9]

N. HallM. Lesaoana and C. Potts, Scheduling with fixed delivery dates, Operations Research, 49 (2001), 134-144. doi: 10.1287/opre.49.1.134.11192.

[10]

N. Hall and C. Potts, Supply chain scheduling: Batching and delivery, Operation research, 51 (2003), 566-584. doi: 10.1287/opre.51.4.566.16106.

[11]

N. Hall and C. Potts, The coordination of scheduling and batch deliveries, Annals of Operations Research, 135 (2005), 41-64. doi: 10.1007/s10479-005-6234-8.

[12]

R. Hallah, Minimizing total earliness and tardiness on a single machine using a hybrid heuristic, Computers & Operations Research, 34 (2007), 3126-3142.

[13]

A. HamidiniaS. KhakabimamaghaniM. Mazdeh and M. Jafari, A genetic algorithm for minimizing total tardiness/earliness of weighted jobs in a batched delivery system, Computers & Industrial Engineering, 62 (2012), 29-38.

[14]

S. HanZ. Peng and S. Wang, The maximum flow problem of uncertain network, Information Sciences, 265 (2014), 167-175. doi: 10.1016/j.ins.2013.11.029.

[15]

X. HaoL. LinM. Gen and K. Ohno, Effective estimation of distribution algorithm for stochastic job shop scheduling problem, Procedia Computer Science, 20 (2013), 102-107.

[16]

G. Jiang, An uncertain chance-constrained programming model for empty container allocation, Information: An International Interdisciplinary Journal, 16 (2013), 1119-1124.

[17]

F. JolaiM. RabbaniS. AmalnickA. DabaghiM. Dehghan and M. YazdanParas, Genetic algorithm for bi-criteria single machine scheduling problem of minimizing maximum earliness and number of tardy jobs, Applied Mathematics & Computation, 194 (2007), 552-560. doi: 10.1016/j.amc.2007.04.063.

[18]

S. KarimiZ. ArdalanB. Naderi and M. Mohammadi, Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm, Applied Mathematical Modelling, 47 (2017), 667-682. doi: 10.1016/j.apm.2016.09.022.

[19]

H. KeJ. Ma and G. Tian, Hybrid multilevel programming with uncertain random parameters, Journal of Intelligent Manufacturing, 28 (2017), 589-596.

[20]

S. Li and J. Peng, A new approach to risk comparison via uncertain measure, Industrial Engineering and Management Systems, 11 (2012), 176-182.

[21]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004.

[22]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010.

[23]

B. Liu and K. Yao, Uncertain multilevel programming: algorithm and applications, Computers & Industrial Engineering, 89 (2015), 235-240.

[24]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.

[25]

A. Mason and E. Anderson, Minimizing flow time on a single-machine with job classes and setup times, Naval Research Logistic, 38 (1991), 333-350. doi: 10.1002/1520-6750(199106)38:3<333::AID-NAV3220380305>3.0.CO;2-0.

[26]

Y. NingX. ChenZ. Wang and X. Li, An uncertain multi-objective programming model for machine scheduling problem, International Journal of Machine Learning and Cybernetics, 8 (2017), 1493-1500.

[27]

Z. Peng and K. Iwamura, A sufficient and necessary condition of uncertainty distribution, Journal of Interdisciplinary Mathematics, 13 (2010), 277-285. doi: 10.1080/09720502.2010.10700701.

[28]

X. Qi, Coordinated logistics scheduling for in-house production and outsourcing, IEEE Transactions on Automation Science and Engineering, 5 (2008), 188-192.

[29]

L. Rong, Two new uncertainty programming models of inventory with uncertain costs, Journal of Information & Computational Science, 8 (2011), 280-288.

[30]

J. Shen and Y. Zhu, Scheduling in a two-stage supply chain with uncertain parameters, Journal of Intelligent and Fuzzy Systems, 30 (2016), 3439-3449.

[31]

A. SinghJ. ValenteMaria and M. Moreira, Hybrid heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, International Journal of Machine Learning and Cybernetics, 3 (2012), 327-333.

[32]

A. SoukhalA. Oulamara and P. Martineau, Complexity of flow shop scheduling problems with transportation constraints, European Journal of Operational Research, 161 (2005), 32-41. doi: 10.1016/j.ejor.2003.03.002.

[33]

K. Stecke and X. Zhao, Production and transportation integration for a make-todelivery business mode, Manufacturing & Service Operations Management, 9 (2007), 206-224.

[34]

G. Steiner and R. Zhang, Approximation algorithms for minimizing the total weighted number of late jobs with late deliveries in two-level supply chains, Journal of Scheduling, 12 (2009), 565-574. doi: 10.1007/s10951-009-0109-9.

[35]

G. Wan and B. Yen, Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties, European Journal of Operational Research, 142 (2002), 271-281. doi: 10.1016/S0377-2217(01)00302-2.

[36]

X. Wang and T. Cheng, Logistics scheduling to minimize inventory and transport costs, International Journal of Production Economics, 121 (2009), 266-273.

[37]

X. Wang and T. Cheng, Production scheduling with supply and delivery considerations to minimize the makespan, European Journal of Operational Research, 194 (2009), 743-752. doi: 10.1016/j.ejor.2007.12.033.

[38]

X. Wu and X. Zhou, Stochastic scheduling to minimize expected maximum lateness, European Journal of Operational Research, 190 (2008), 103-115. doi: 10.1016/j.ejor.2007.06.015.

[39]

H. YanY. Sun and Y. Zhu, A linear-quadratic control problem of uncertain discretr-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.

[40]

X. Yang, Scheduling with generalized batch delivery dates and earliness penalties, IIE Transactions, 32 (2000), 735-741.

[41]

K. Yao, Multi-dimensional uncertain calculus with liu process, Journal of Uncertain Systems, 8 (2014), 244-254.

[42]

Y. YinT. ChengS. Cheng and C. Wu, Single-machine batch delivery scheduling with an assignable common due date and controllable processing times, Computers & Industrial Engineering, 65 (2013), 652-662.

[43]

Y. YinT. ChengC. Wu and S. Cheng, Single-machine common due-date scheduling with batch delivery costs and resource-dependent processing times, International Journal of Production Research, 51 (2013), 5083-5099.

[44]

Y. YinT. ChengC. Hsu and C. Wu, Single-machine batch delivery scheduling with an assignable common due window, Omega, 41 (2013), 216-225.

[45]

Y. Yin, T. Cheng, C. Wu and S. Cheng, Single-machine batch delivery scheduling and common due-date assignment with a rate-modifying activity, International Journal of Production Research, 52 (2014), 5583-5596.

[46]

Y. YinY. WangT. ChengD. Wang and C. Wu, Two-agent single-machine scheduling to minimize the batch delivery cost, Computers & Industrial Engineering, 92 (2016), 16-30.

[47]

S. Zdrzalka, Approximation algorithms for single-machine sequencing with delivery times and unit batch set-up times, European Journal of Operational Research, 51 (1991), 199-209.

[48]

Y. Zhu, Functions of uncertain variables and uncertain programming, Journal of Uncertain Systems, 6 (2012), 278-288.

show all references

References:
[1]

E. CakiciS. Mason and M. Kurz, Multi-objective analysis of an integrated supply chain scheduling problem, International Journal of Production Research, 50 (2012), 2624-2638.

[2]

Y. Chen and Y. Zhu, Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems Journal of Industrial and Management Optimization, to appear. doi: 10.3934/jimo.2017082.

[3]

T. ChengV. Gordon and M. Kovalyov, Single machine scheduling with batch deliveries, European Journal of Operational Research, 94 (1996), 227-283.

[4]

Q. Cui and Y. Sheng, Uncertain programming model for solid transportation problem, Information: An International Interdisciplinary Journal, 16 (2013), 1207-1214.

[5]

J. Framinan and P. Gonzalez, On heuristic solutions for the stochastic flow shop scheduling problem, European Journal of Operational Research, 246 (2015), 413-420. doi: 10.1016/j.ejor.2015.05.006.

[6]

B. FuY. Huo and H. Zhao, Coordinated scheduling of production and delivery with production window and delivery capacity constraints, Theoretical Computer Science, 422 (2012), 39-51. doi: 10.1016/j.tcs.2011.11.035.

[7]

Y. Gao, Shortest path problem with uncertain arc lengths, Computers & Mathematics with Applications, 62 (2011), 2591-2600. doi: 10.1016/j.camwa.2011.07.058.

[8]

Y. GaoL. Yang and S. Li, Uncertain Models on railway transportation planning problem, Applied Mathematical Modelling, 40 (2016), 4921-4934. doi: 10.1016/j.apm.2015.12.016.

[9]

N. HallM. Lesaoana and C. Potts, Scheduling with fixed delivery dates, Operations Research, 49 (2001), 134-144. doi: 10.1287/opre.49.1.134.11192.

[10]

N. Hall and C. Potts, Supply chain scheduling: Batching and delivery, Operation research, 51 (2003), 566-584. doi: 10.1287/opre.51.4.566.16106.

[11]

N. Hall and C. Potts, The coordination of scheduling and batch deliveries, Annals of Operations Research, 135 (2005), 41-64. doi: 10.1007/s10479-005-6234-8.

[12]

R. Hallah, Minimizing total earliness and tardiness on a single machine using a hybrid heuristic, Computers & Operations Research, 34 (2007), 3126-3142.

[13]

A. HamidiniaS. KhakabimamaghaniM. Mazdeh and M. Jafari, A genetic algorithm for minimizing total tardiness/earliness of weighted jobs in a batched delivery system, Computers & Industrial Engineering, 62 (2012), 29-38.

[14]

S. HanZ. Peng and S. Wang, The maximum flow problem of uncertain network, Information Sciences, 265 (2014), 167-175. doi: 10.1016/j.ins.2013.11.029.

[15]

X. HaoL. LinM. Gen and K. Ohno, Effective estimation of distribution algorithm for stochastic job shop scheduling problem, Procedia Computer Science, 20 (2013), 102-107.

[16]

G. Jiang, An uncertain chance-constrained programming model for empty container allocation, Information: An International Interdisciplinary Journal, 16 (2013), 1119-1124.

[17]

F. JolaiM. RabbaniS. AmalnickA. DabaghiM. Dehghan and M. YazdanParas, Genetic algorithm for bi-criteria single machine scheduling problem of minimizing maximum earliness and number of tardy jobs, Applied Mathematics & Computation, 194 (2007), 552-560. doi: 10.1016/j.amc.2007.04.063.

[18]

S. KarimiZ. ArdalanB. Naderi and M. Mohammadi, Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm, Applied Mathematical Modelling, 47 (2017), 667-682. doi: 10.1016/j.apm.2016.09.022.

[19]

H. KeJ. Ma and G. Tian, Hybrid multilevel programming with uncertain random parameters, Journal of Intelligent Manufacturing, 28 (2017), 589-596.

[20]

S. Li and J. Peng, A new approach to risk comparison via uncertain measure, Industrial Engineering and Management Systems, 11 (2012), 176-182.

[21]

B. Liu, Uncertainty Theory, Springer-Verlag, Berlin, 2004.

[22]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010.

[23]

B. Liu and K. Yao, Uncertain multilevel programming: algorithm and applications, Computers & Industrial Engineering, 89 (2015), 235-240.

[24]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.

[25]

A. Mason and E. Anderson, Minimizing flow time on a single-machine with job classes and setup times, Naval Research Logistic, 38 (1991), 333-350. doi: 10.1002/1520-6750(199106)38:3<333::AID-NAV3220380305>3.0.CO;2-0.

[26]

Y. NingX. ChenZ. Wang and X. Li, An uncertain multi-objective programming model for machine scheduling problem, International Journal of Machine Learning and Cybernetics, 8 (2017), 1493-1500.

[27]

Z. Peng and K. Iwamura, A sufficient and necessary condition of uncertainty distribution, Journal of Interdisciplinary Mathematics, 13 (2010), 277-285. doi: 10.1080/09720502.2010.10700701.

[28]

X. Qi, Coordinated logistics scheduling for in-house production and outsourcing, IEEE Transactions on Automation Science and Engineering, 5 (2008), 188-192.

[29]

L. Rong, Two new uncertainty programming models of inventory with uncertain costs, Journal of Information & Computational Science, 8 (2011), 280-288.

[30]

J. Shen and Y. Zhu, Scheduling in a two-stage supply chain with uncertain parameters, Journal of Intelligent and Fuzzy Systems, 30 (2016), 3439-3449.

[31]

A. SinghJ. ValenteMaria and M. Moreira, Hybrid heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, International Journal of Machine Learning and Cybernetics, 3 (2012), 327-333.

[32]

A. SoukhalA. Oulamara and P. Martineau, Complexity of flow shop scheduling problems with transportation constraints, European Journal of Operational Research, 161 (2005), 32-41. doi: 10.1016/j.ejor.2003.03.002.

[33]

K. Stecke and X. Zhao, Production and transportation integration for a make-todelivery business mode, Manufacturing & Service Operations Management, 9 (2007), 206-224.

[34]

G. Steiner and R. Zhang, Approximation algorithms for minimizing the total weighted number of late jobs with late deliveries in two-level supply chains, Journal of Scheduling, 12 (2009), 565-574. doi: 10.1007/s10951-009-0109-9.

[35]

G. Wan and B. Yen, Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties, European Journal of Operational Research, 142 (2002), 271-281. doi: 10.1016/S0377-2217(01)00302-2.

[36]

X. Wang and T. Cheng, Logistics scheduling to minimize inventory and transport costs, International Journal of Production Economics, 121 (2009), 266-273.

[37]

X. Wang and T. Cheng, Production scheduling with supply and delivery considerations to minimize the makespan, European Journal of Operational Research, 194 (2009), 743-752. doi: 10.1016/j.ejor.2007.12.033.

[38]

X. Wu and X. Zhou, Stochastic scheduling to minimize expected maximum lateness, European Journal of Operational Research, 190 (2008), 103-115. doi: 10.1016/j.ejor.2007.06.015.

[39]

H. YanY. Sun and Y. Zhu, A linear-quadratic control problem of uncertain discretr-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.

[40]

X. Yang, Scheduling with generalized batch delivery dates and earliness penalties, IIE Transactions, 32 (2000), 735-741.

[41]

K. Yao, Multi-dimensional uncertain calculus with liu process, Journal of Uncertain Systems, 8 (2014), 244-254.

[42]

Y. YinT. ChengS. Cheng and C. Wu, Single-machine batch delivery scheduling with an assignable common due date and controllable processing times, Computers & Industrial Engineering, 65 (2013), 652-662.

[43]

Y. YinT. ChengC. Wu and S. Cheng, Single-machine common due-date scheduling with batch delivery costs and resource-dependent processing times, International Journal of Production Research, 51 (2013), 5083-5099.

[44]

Y. YinT. ChengC. Hsu and C. Wu, Single-machine batch delivery scheduling with an assignable common due window, Omega, 41 (2013), 216-225.

[45]

Y. Yin, T. Cheng, C. Wu and S. Cheng, Single-machine batch delivery scheduling and common due-date assignment with a rate-modifying activity, International Journal of Production Research, 52 (2014), 5583-5596.

[46]

Y. YinY. WangT. ChengD. Wang and C. Wu, Two-agent single-machine scheduling to minimize the batch delivery cost, Computers & Industrial Engineering, 92 (2016), 16-30.

[47]

S. Zdrzalka, Approximation algorithms for single-machine sequencing with delivery times and unit batch set-up times, European Journal of Operational Research, 51 (1991), 199-209.

[48]

Y. Zhu, Functions of uncertain variables and uncertain programming, Journal of Uncertain Systems, 6 (2012), 278-288.

Figure 1.  An example of crossover
Figure 2.  An example of mutation
Figure 3.  The sensitivity of the solution with respect to the confidence level
Table 1.  List of notations
notationsdefinitions
$i=1, 2, ..., n$the index of job
$j=1, 2, ...$the index of position
$b=1, 2, ...$the index of batch
$l=1, 2, ...$, Kthe index of customer
$n_{l}$the number of jobs of customer $l$, l=1, 2, ..., K
$p_i$processing time of job $i$, i=1, 2, ..., n
$[d^{s}_{i}, d^{t}_{i}]$due window of job $i$, i=1, 2, ..., n
$\alpha_i$unit earliness penalty cost of job $i$, i=1, 2, ..., n
$\beta_i$unit tardiness penalty cost of job $i$, i=1, 2, ..., n
$h_i$unit holding cost of job $i$, i=1, 2, ..., n
$D_l$transportation cost of customer $l$, l=1, 2, ..., K
$C_i$completion time of job $i$, i=1, 2, ..., n
$T_j$completion time of the $j$th job on machine}, j=1, 2, ...
$R_i$delivery date of job $i$, i=1, 2, ..., n
$R^{'}_{lb}$delivery date of the $b$th batch of customer $l$, l=1, 2, ..., K; b=1, 2, ...
notationsdefinitions
$i=1, 2, ..., n$the index of job
$j=1, 2, ...$the index of position
$b=1, 2, ...$the index of batch
$l=1, 2, ...$, Kthe index of customer
$n_{l}$the number of jobs of customer $l$, l=1, 2, ..., K
$p_i$processing time of job $i$, i=1, 2, ..., n
$[d^{s}_{i}, d^{t}_{i}]$due window of job $i$, i=1, 2, ..., n
$\alpha_i$unit earliness penalty cost of job $i$, i=1, 2, ..., n
$\beta_i$unit tardiness penalty cost of job $i$, i=1, 2, ..., n
$h_i$unit holding cost of job $i$, i=1, 2, ..., n
$D_l$transportation cost of customer $l$, l=1, 2, ..., K
$C_i$completion time of job $i$, i=1, 2, ..., n
$T_j$completion time of the $j$th job on machine}, j=1, 2, ...
$R_i$delivery date of job $i$, i=1, 2, ..., n
$R^{'}_{lb}$delivery date of the $b$th batch of customer $l$, l=1, 2, ..., K; b=1, 2, ...
Table 2.  Results for small scale
NoGAHGA
minmaxtime(s)minmaxtime(s)
13079336135631253349301
22953341533828373437312
32556288931323982735263
43582376435936193923329
52046235827120982491254
NoGAHGA
minmaxtime(s)minmaxtime(s)
13079336135631253349301
22953341533828373437312
32556288931323982735263
43582376435936193923329
52046235827120982491254
Table 3.  Results for mesoscale
NoGAHGA
minmaxtime(s)minmaxtime(s)
1846688931603850186971354
2932096711754945596121340
3832385691625836185381385
4873690281701879891101313
5795480771590783981541397
NoGAHGA
minmaxtime(s)minmaxtime(s)
1846688931603850186971354
2932096711754945596121340
3832385691625836185381385
4873690281701879891101313
5795480771590783981541397
Table 4.  Results for large scale
NoGAHGA
minmaxtime(s)minmaxtime(s)
12154222634865521696218736320
21955621391836719374200655966
32140623767896121250220346257
42197323891905821630227416299
52059222378853720063200976035
NoGAHGA
minmaxtime(s)minmaxtime(s)
12154222634865521696218736320
21955621391836719374200655966
32140623767896121250220346257
42197323891905821630227416299
52059222378853720063200976035
Table 5.  Average relative percentage errors of GA and HGA
$n$GAHGA
$20$ $0.06266$ $0.05713$
$50$ $0.03316$ $0.02685$
$100$ $0.01295$ $0.007372$
$200$ $0.005723$ $0.004993$
Average$0.028623$ $0.024086$
$n$GAHGA
$20$ $0.06266$ $0.05713$
$50$ $0.03316$ $0.02685$
$100$ $0.01295$ $0.007372$
$200$ $0.005723$ $0.004993$
Average$0.028623$ $0.024086$
[1]

Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial & Management Optimization, 2014, 10 (1) : 259-273. doi: 10.3934/jimo.2014.10.259

[2]

Ganggang Li, Xiwen Lu, Peihai Liu. The coordination of single-machine scheduling with availability constraints and delivery. Journal of Industrial & Management Optimization, 2016, 12 (2) : 757-770. doi: 10.3934/jimo.2016.12.757

[3]

Yunqiang Yin, T. C. E. Cheng, Jianyou Xu, Shuenn-Ren Cheng, Chin-Chia Wu. Single-machine scheduling with past-sequence-dependent delivery times and a linear deterioration. Journal of Industrial & Management Optimization, 2013, 9 (2) : 323-339. doi: 10.3934/jimo.2013.9.323

[4]

Chengxin Luo. Single machine batch scheduling problem to minimize makespan with controllable setup and jobs processing times. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 71-77. doi: 10.3934/naco.2015.5.71

[5]

Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial & Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269

[6]

Weiwei Wang, Ping Chen. A mean-reverting currency model with floating interest rates in uncertain environment. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018129

[7]

Jian Xiong, Yingwu Chen, Zhongbao Zhou. Resilience analysis for project scheduling with renewable resource constraint and uncertain activity durations. Journal of Industrial & Management Optimization, 2016, 12 (2) : 719-737. doi: 10.3934/jimo.2016.12.719

[8]

Güvenç Şahin, Ravindra K. Ahuja. Single-machine scheduling with stepwise tardiness costs and release times. Journal of Industrial & Management Optimization, 2011, 7 (4) : 825-848. doi: 10.3934/jimo.2011.7.825

[9]

Hua-Ping Wu, Min Huang, W. H. Ip, Qun-Lin Fan. Algorithms for single-machine scheduling problem with deterioration depending on a novel model. Journal of Industrial & Management Optimization, 2017, 13 (2) : 681-695. doi: 10.3934/jimo.2016040

[10]

Muminu O. Adamu, Aderemi O. Adewumi. A survey of single machine scheduling to minimize weighted number of tardy jobs. Journal of Industrial & Management Optimization, 2014, 10 (1) : 219-241. doi: 10.3934/jimo.2014.10.219

[11]

Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391

[12]

Zhichao Geng, Jinjiang Yuan. Scheduling family jobs on an unbounded parallel-batch machine to minimize makespan and maximum flow time. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1479-1500. doi: 10.3934/jimo.2018017

[13]

Ping Yan, Ji-Bo Wang, Li-Qiang Zhao. Single-machine bi-criterion scheduling with release times and exponentially time-dependent learning effects. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-15. doi: 10.3934/jimo.2018088

[14]

Chuanli Zhao, Yunqiang Yin, T. C. E. Cheng, Chin-Chia Wu. Single-machine scheduling and due date assignment with rejection and position-dependent processing times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 691-700. doi: 10.3934/jimo.2014.10.691

[15]

Peng Guo, Wenming Cheng, Yi Wang. A general variable neighborhood search for single-machine total tardiness scheduling problem with step-deteriorating jobs. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1071-1090. doi: 10.3934/jimo.2014.10.1071

[16]

Xingong Zhang. Single machine and flowshop scheduling problems with sum-of-processing time based learning phenomenon. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018148

[17]

Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial & Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493

[18]

Yuzhong Zhang, Chunsong Bai, Qingguo Bai, Jianteng Xu. Duplicating in batch scheduling. Journal of Industrial & Management Optimization, 2007, 3 (4) : 685-692. doi: 10.3934/jimo.2007.3.685

[19]

Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences & Engineering, 2008, 5 (2) : 355-388. doi: 10.3934/mbe.2008.5.355

[20]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (44)
  • HTML views (358)
  • Cited by (0)

Other articles
by authors

[Back to Top]