• Previous Article
    Some characterizations of robust solution sets for uncertain convex optimization problems with locally Lipschitz inequality constraints
  • JIMO Home
  • This Issue
  • Next Article
    A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method
doi: 10.3934/jimo.2018054

Exclusion sets in the Δ-type eigenvalue inclusion set for tensors

School of Mathematics and Statistics, Yunnan University, Kunming 650091, China

* Corresponding author: Yaotang Li

Received  August 2017 Revised  October 2017 Published  April 2018

Fund Project: The first author is supported by National Natural Science Foundations of China (11361074).

By excluding some sets which don't include any eigenvalue of a given tensor from the Δ-type eigenvalue inclusion set, two new Δ-type eigenvalue inclusion sets of tensors are given. And two criteria for identifying nonsingular tensors are also provided by using the new Δ-type eigenvalue inclusion sets.

Citation: Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018054
References:
[1]

C. BuY. WeiL. Sun and J. Zhou, Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra and its Applications, 480 (2015), 168-175. doi: 10.1016/j.laa.2015.04.034.

[2]

C. J. Hillar and L. -H. Lim, Most tensor problems are NP-hard, Journal of the ACM (JACM), 60 (2013), Art. 45, 39 pp.

[3]

S. HuZ. HuangC. Ling and L. Qi, On determinants and eigenvalue theory of tensors, Journal of Symbolic Computation, 50 (2013), 508-531. doi: 10.1016/j.jsc.2012.10.001.

[4]

Z. Huang, L. Wang, Z. Xu and J. Cui, A new S-type eigenvalue inclusion set for tensors and its applications, Journal of Inequalities and Applications, 2016 (2016), Paper No. 254, 19 pp.

[5]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications, 21 (2014), 39-50. doi: 10.1002/nla.1858.

[6]

C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors, Linear and Multilinear Algebra, 64 (2016), 587-601. doi: 10.1080/03081087.2015.1049582.

[7]

C. LiZ. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra and its Applications, 481 (2015), 36-53. doi: 10.1016/j.laa.2015.04.023.

[8]

C. LiA. Jiao and Y. Li, An S-type eigenvalue localization set for tensors, Linear Algebra and its Applications, 493 (2016), 469-483. doi: 10.1016/j.laa.2015.12.018.

[9]

C. LiJ. Zhou and Y. Li, A new Brauer-type eigenvalue localization set for tensors, Linear and Multilinear Algebra, 64 (2016), 727-736. doi: 10.1080/03081087.2015.1119779.

[10]

L. -H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.

[11]

L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[12]

L. Qi, Eigenvalues of a Supersymmetric Tensor and Positive Definiteness of an Even Degree Multivariate Form, Department of Applied Mathematics, The Hong Kong Polytechnic University, 2004.

[13]

C. Sang and J. Zhao, A new eigenvalue inclusion set for tensors with its applications, Cogent Mathematics, 4 (2017), 1320831. doi: 10.1080/23311835.2017.1320831.

[14]

X. Wang and Y. Wei, H-tensors and nonsingular H-tensors, Frontiers of Mathematics in China, 11 (2016), 557-575. doi: 10.1007/s11464-015-0495-6.

[15]

Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 2517-2530. doi: 10.1137/090778766.

[16]

Q. Yang and Y. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors Ⅱ, SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1236-1250. doi: 10.1137/100813671.

show all references

References:
[1]

C. BuY. WeiL. Sun and J. Zhou, Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra and its Applications, 480 (2015), 168-175. doi: 10.1016/j.laa.2015.04.034.

[2]

C. J. Hillar and L. -H. Lim, Most tensor problems are NP-hard, Journal of the ACM (JACM), 60 (2013), Art. 45, 39 pp.

[3]

S. HuZ. HuangC. Ling and L. Qi, On determinants and eigenvalue theory of tensors, Journal of Symbolic Computation, 50 (2013), 508-531. doi: 10.1016/j.jsc.2012.10.001.

[4]

Z. Huang, L. Wang, Z. Xu and J. Cui, A new S-type eigenvalue inclusion set for tensors and its applications, Journal of Inequalities and Applications, 2016 (2016), Paper No. 254, 19 pp.

[5]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numerical Linear Algebra with Applications, 21 (2014), 39-50. doi: 10.1002/nla.1858.

[6]

C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors, Linear and Multilinear Algebra, 64 (2016), 587-601. doi: 10.1080/03081087.2015.1049582.

[7]

C. LiZ. Chen and Y. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra and its Applications, 481 (2015), 36-53. doi: 10.1016/j.laa.2015.04.023.

[8]

C. LiA. Jiao and Y. Li, An S-type eigenvalue localization set for tensors, Linear Algebra and its Applications, 493 (2016), 469-483. doi: 10.1016/j.laa.2015.12.018.

[9]

C. LiJ. Zhou and Y. Li, A new Brauer-type eigenvalue localization set for tensors, Linear and Multilinear Algebra, 64 (2016), 727-736. doi: 10.1080/03081087.2015.1119779.

[10]

L. -H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005,129–132.

[11]

L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation, 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007.

[12]

L. Qi, Eigenvalues of a Supersymmetric Tensor and Positive Definiteness of an Even Degree Multivariate Form, Department of Applied Mathematics, The Hong Kong Polytechnic University, 2004.

[13]

C. Sang and J. Zhao, A new eigenvalue inclusion set for tensors with its applications, Cogent Mathematics, 4 (2017), 1320831. doi: 10.1080/23311835.2017.1320831.

[14]

X. Wang and Y. Wei, H-tensors and nonsingular H-tensors, Frontiers of Mathematics in China, 11 (2016), 557-575. doi: 10.1007/s11464-015-0495-6.

[15]

Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 2517-2530. doi: 10.1137/090778766.

[16]

Q. Yang and Y. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors Ⅱ, SIAM Journal on Matrix Analysis and Applications, 32 (2011), 1236-1250. doi: 10.1137/100813671.

Figure 1.  $C(\mathcal{A}_{0})\nsubseteqq V(\mathcal{A}_{0})$ and $C(\mathcal{A}_{0})\nsupseteqq V(\mathcal{A}_{0})$.
Figure 2.  $C(\mathcal{A}_{1})\subset \Theta(\mathcal{A}_{1})$.
Figure 3.  $V(\mathcal{A}_{2})\subset \Theta(\mathcal{A}_{2})$.
[1]

Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009

[2]

Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031

[3]

Yining Gu, Wei Wu. New bounds for eigenvalues of strictly diagonally dominant tensors. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 203-210. doi: 10.3934/naco.2018012

[4]

Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 583-599. doi: 10.3934/naco.2013.3.583

[5]

Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018153

[6]

Fei-Ying Yang, Wan-Tong Li, Jian-Wen Sun. Principal eigenvalues for some nonlocal eigenvalue problems and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4027-4049. doi: 10.3934/dcds.2016.36.4027

[7]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[8]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[9]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[10]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[11]

Antonia Chinnì, Roberto Livrea. Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 753-764. doi: 10.3934/dcdss.2012.5.753

[12]

Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078

[13]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[14]

Antonio Cañada, Antonio J. Ureña. Some new qualittative properties on the solvability set of pendulum-type equations. Conference Publications, 2001, 2001 (Special) : 66-73. doi: 10.3934/proc.2001.2001.66

[15]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[16]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

[17]

Li Li, Xinzhen Zhang, Zheng-Hai Huang, Liqun Qi. Test of copositive tensors. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-11. doi: 10.3934/jimo.2018075

[18]

Steve Hofmann, Dorina Mitrea, Marius Mitrea, Andrew J. Morris. Square function estimates in spaces of homogeneous type and on uniformly rectifiable Euclidean sets. Electronic Research Announcements, 2014, 21: 8-18. doi: 10.3934/era.2014.21.8

[19]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[20]

Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure & Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]