• Previous Article
    An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment
  • JIMO Home
  • This Issue
  • Next Article
    Some characterizations of robust solution sets for uncertain convex optimization problems with locally Lipschitz inequality constraints
doi: 10.3934/jimo.2018047

Effect of Bitcoin fee on transaction-confirmation process

Graduate School of Information Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 6300192, Japan

* Corresponding author: Shoji Kasahara

Received  June 2017 Revised  October 2017 Published  April 2018

Fund Project: The first author is supported in part by SCAT Foundation, and Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (B) No. 15H04008

In Bitcoin system, transactions are prioritized according to transaction fees. Transactions without fees are given low priority and likely to wait for confirmation. Because the demand of micro payment in Bitcoin is expected to increase due to low remittance cost, it is important to quantitatively investigate how transactions with small fees of Bitcoin affect the transaction-confirmation time. In this paper, we analyze the transaction-confirmation time by queueing theory. We model the transaction-confirmation process of Bitcoin as a priority queueing system with batch service, deriving the mean transaction-confirmation time. Numerical examples show how the demand of transactions with low fees affects the transaction-confirmation time. We also consider the effect of the maximum block size on the transaction-confirmation time.

Citation: Shoji Kasahara, Jun Kawahara. Effect of Bitcoin fee on transaction-confirmation process. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018047
References:
[1]

E. AndroulakiG. O. KarameM. RoeschlinT. Scherer and S. Capkun, Evaluating user privacy in Bitcoin, The 17th International Conference on Financial Cryptography and Data Security, (2013), 34-51. doi: 10.1007/978-3-642-39884-1_4.

[2]

A. M. Antonopoulos, Mastering Bitcoin, O'Reilly, 2014.

[3]

T. BamertC. DeckerL. ElsenR. Wattenhofer and S. Welten, Have a snack, pay with Bitcoins, 2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing, (2013), 1-5. doi: 10.1109/P2P.2013.6688717.

[4]

R. BöhmeN. ChristinB. Edelman and T. Moore, Bitcoin: Economics, technology, and governance, Journal of Economic Perspectives, 29 (2015), 213-238.

[5]

J. BonneauA. MillerJ. ClarkA. NarayananJ. A. Kroll and E. W. Felten, SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies, IEEE Symposium on Security and Privacy, (2015), 104-121. doi: 10.1109/SP.2015.14.

[6]

M. L. Chaudhry and J. G. C. Templeton, The queuing system M/$ \mbox{G}^{\text B} $/1 and its ramifications, European Journal of Operational Research, 6 (1981), 56-60. doi: 10.1016/0377-2217(81)90328-3.

[7]

M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues, John Wiley & Sons, 1983.

[8]

C. Decker and R. Wattenhofer, Information propagation in the Bitcoin network, 13th IEEE International Conference on Peer-to-Peer Computing, (2013), 1-10. doi: 10.1109/P2P.2013.6688704.

[9]

J. GöbelH. P. KeelerA. E. Krzesinski and P. G. Taylor, Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of propagation delay, Performance Evaluation, 104 (2016), 23-41.

[10]

G. O. KarameE. Androulaki and S. Capkun, Double-spending fast payments in Bitcoin, The 2012 ACM Conference on Computer and Communications Security, (2012), 906-917. doi: 10.1145/2382196.2382292.

[11]

A. Kiayias and G. Panagiotakos, Speed-security tradeoffs in blockchain protocols, IACR: Cryptology ePrint Archive, 2015.

[12]

S. Kotz and S. Nadarajah, Extreme Value Distributions Theory and Applications, Imperial College Press, 2000.

[13]

M. Möser and R. Böhome, Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees, Financial Cryptography and Data Security, Lecture Notes in Computer Science, Springer, 8976 (2015), 19-33.

[14]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, (2008). Available from https://bitcoin.org/bitcoin.pdf.

[15]

R. Peter, A transaction fee market exists without a block size limit, (2015). Available from https://scalingbitcoin.org/papers/feemarket.pdf

[16]

Y. Sompolinsky and A. Zohar, Accelerating Bitcoin's transaction processing. Fast money grows on trees, not chains, IACR: Cryptology ePrint Archive, 2013, Available from https://eprint.iacr.org/2013/881.

[17]

Y. Sompolinsky and A. Zohar, Secure high-rate transaction processing in Bitcoin, 19th International Conference on Financial Cryptography and Data Security, 8975 (2015), 507-527.

[18]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, North-Holland Publishing Co., Amsterdam, 1993.

[19]

F. Tschorsch and B. Scheuermann, Bitcoin and beyond: A technical survey on decentralized digital currencies, IEEE Communications Surveys & Tutorials, 18 (2016), 2084-2123. doi: 10.1109/COMST.2016.2535718.

[20]

R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, 1989.

[21]

https://bitnodes.21.co/.

[22]

https://blockchain.info/.

[23]

https://cdecker.github.io/btcresearch/.

[24]

https://en.bitcoin.it/wiki/Confirmation.

[25]

https://en.bitcoin.it/wiki/Scalability.

[26]

https://en.bitcoin.it/wiki/Transaction_fees.

show all references

References:
[1]

E. AndroulakiG. O. KarameM. RoeschlinT. Scherer and S. Capkun, Evaluating user privacy in Bitcoin, The 17th International Conference on Financial Cryptography and Data Security, (2013), 34-51. doi: 10.1007/978-3-642-39884-1_4.

[2]

A. M. Antonopoulos, Mastering Bitcoin, O'Reilly, 2014.

[3]

T. BamertC. DeckerL. ElsenR. Wattenhofer and S. Welten, Have a snack, pay with Bitcoins, 2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing, (2013), 1-5. doi: 10.1109/P2P.2013.6688717.

[4]

R. BöhmeN. ChristinB. Edelman and T. Moore, Bitcoin: Economics, technology, and governance, Journal of Economic Perspectives, 29 (2015), 213-238.

[5]

J. BonneauA. MillerJ. ClarkA. NarayananJ. A. Kroll and E. W. Felten, SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies, IEEE Symposium on Security and Privacy, (2015), 104-121. doi: 10.1109/SP.2015.14.

[6]

M. L. Chaudhry and J. G. C. Templeton, The queuing system M/$ \mbox{G}^{\text B} $/1 and its ramifications, European Journal of Operational Research, 6 (1981), 56-60. doi: 10.1016/0377-2217(81)90328-3.

[7]

M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues, John Wiley & Sons, 1983.

[8]

C. Decker and R. Wattenhofer, Information propagation in the Bitcoin network, 13th IEEE International Conference on Peer-to-Peer Computing, (2013), 1-10. doi: 10.1109/P2P.2013.6688704.

[9]

J. GöbelH. P. KeelerA. E. Krzesinski and P. G. Taylor, Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of propagation delay, Performance Evaluation, 104 (2016), 23-41.

[10]

G. O. KarameE. Androulaki and S. Capkun, Double-spending fast payments in Bitcoin, The 2012 ACM Conference on Computer and Communications Security, (2012), 906-917. doi: 10.1145/2382196.2382292.

[11]

A. Kiayias and G. Panagiotakos, Speed-security tradeoffs in blockchain protocols, IACR: Cryptology ePrint Archive, 2015.

[12]

S. Kotz and S. Nadarajah, Extreme Value Distributions Theory and Applications, Imperial College Press, 2000.

[13]

M. Möser and R. Böhome, Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees, Financial Cryptography and Data Security, Lecture Notes in Computer Science, Springer, 8976 (2015), 19-33.

[14]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, (2008). Available from https://bitcoin.org/bitcoin.pdf.

[15]

R. Peter, A transaction fee market exists without a block size limit, (2015). Available from https://scalingbitcoin.org/papers/feemarket.pdf

[16]

Y. Sompolinsky and A. Zohar, Accelerating Bitcoin's transaction processing. Fast money grows on trees, not chains, IACR: Cryptology ePrint Archive, 2013, Available from https://eprint.iacr.org/2013/881.

[17]

Y. Sompolinsky and A. Zohar, Secure high-rate transaction processing in Bitcoin, 19th International Conference on Financial Cryptography and Data Security, 8975 (2015), 507-527.

[18]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, North-Holland Publishing Co., Amsterdam, 1993.

[19]

F. Tschorsch and B. Scheuermann, Bitcoin and beyond: A technical survey on decentralized digital currencies, IEEE Communications Surveys & Tutorials, 18 (2016), 2084-2123. doi: 10.1109/COMST.2016.2535718.

[20]

R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, 1989.

[21]

https://bitnodes.21.co/.

[22]

https://blockchain.info/.

[23]

https://cdecker.github.io/btcresearch/.

[24]

https://en.bitcoin.it/wiki/Confirmation.

[25]

https://en.bitcoin.it/wiki/Scalability.

[26]

https://en.bitcoin.it/wiki/Transaction_fees.

Figure 1.  Trend of fee-amount distribution over time
Figure 2.  Trend of transaction-arrival rates of two priority classes
Figure 3.  Relative frequency and exponential probability density function of block-generation time
Figure 4.  Comparison of analysis and simulation for the transaction-confirmation time: Two-priority case
Figure 5.  Mean transaction-confirmation time: classless case
Figure 6.  Mean transaction-confirmation time: two-priority case. ($\lambda_H = 0.90466$)
Figure 7.  Mean transaction-confirmation time: high priority case. The ratio of $\lambda_H$ to $\lambda_L$ is fixed, and the overall arrival rate $\lambda$ changes
Figure 8.  Mean transaction-confirmation time: low priority case. The ratio of $\lambda_H$ to $\lambda_L$ is fixed, and the overall arrival rate $\lambda$ changes
Table 1.  Block-generation time
Mean [s]544.09
Variance $2.9277 \times 10^{5}$
Maximum [s]6,524
Minimum [s]0
Median [s]377
Mean [s]544.09
Variance $2.9277 \times 10^{5}$
Maximum [s]6,524
Minimum [s]0
Median [s]377
Table 2.  Number of transactions in a block
Mean [transactions]529.27
Variance $2.5152 \times 10^5$
Maximum [transactions]12,239
Minimum [transactions]0
Median [transactions]386
Mean [transactions]529.27
Variance $2.5152 \times 10^5$
Maximum [transactions]12,239
Minimum [transactions]0
Median [transactions]386
Table 3.  Transaction size in byte
Mean571.34
Variance $3.7445\times 10^6$
Maximum999657
Minimum62
Median259
Mean571.34
Variance $3.7445\times 10^6$
Maximum999657
Minimum62
Median259
Table 4.  Cumulative frequency of fee amount for transactions
BTCFrequency
01378501
0.000013050709
0.000142881857
0.00160723356
0.0161219997
0.161236481
161236972
1061237045
BTCFrequency
01378501
0.000013050709
0.000142881857
0.00160723356
0.0161219997
0.161236481
161236972
1061237045
Table 5.  Transaction-type statistics
StatisticClasslessHL
Number of transactions61,353,01457,058,9474,294,067
Mean TCT [s]1075.0874.133744.1
Variance of TCT $1.8989 \times 10^8$ $8.4505 \times 10^7$ $1.5826 \times 10^9$
Maximum of TCT $3.1045\times 10^7$ $3.1045\times 10^7$ $2.6244\times 10^7$
Minimum of TCT000
Median of TCT510502640
Mean arrival rate0.972750.904660.068082
StatisticClasslessHL
Number of transactions61,353,01457,058,9474,294,067
Mean TCT [s]1075.0874.133744.1
Variance of TCT $1.8989 \times 10^8$ $8.4505 \times 10^7$ $1.5826 \times 10^9$
Maximum of TCT $3.1045\times 10^7$ $3.1045\times 10^7$ $2.6244\times 10^7$
Minimum of TCT000
Median of TCT510502640
Mean arrival rate0.972750.904660.068082
Table 6.  Comparison of analysis and measurement for the transaction-confirmation time
Transaction TypeArrival RateMeasurementAnalysis
Classless0.972751,075.0568.10
H0.90466874.13562.16
L0.0680823,744.1647.05
Transaction TypeArrival RateMeasurementAnalysis
Classless0.972751,075.0568.10
H0.90466874.13562.16
L0.0680823,744.1647.05
[1]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[2]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[3]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-26. doi: 10.3934/jimo.2018102

[4]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018113

[5]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[6]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[7]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[8]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-21. doi: 10.3934/jimo.2018030

[9]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[10]

Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007

[11]

Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst, Herwig Bruneel. Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior. Journal of Industrial & Management Optimization, 2010, 6 (3) : 587-602. doi: 10.3934/jimo.2010.6.587

[12]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[13]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial & Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131

[14]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[15]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1457-1470. doi: 10.3934/dcdss.2019100

[16]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[17]

Thomas Demoor, Dieter Fiems, Joris Walraevens, Herwig Bruneel. Partially shared buffers with full or mixed priority. Journal of Industrial & Management Optimization, 2011, 7 (3) : 735-751. doi: 10.3934/jimo.2011.7.735

[18]

Alessia Marigo. Optimal traffic distribution and priority coefficients for telecommunication networks. Networks & Heterogeneous Media, 2006, 1 (2) : 315-336. doi: 10.3934/nhm.2006.1.315

[19]

Tom Maertens, Joris Walraevens, Herwig Bruneel. Controlling delay differentiation with priority jumps: Analytical study. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 657-673. doi: 10.3934/naco.2011.1.657

[20]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (25)
  • HTML views (437)
  • Cited by (0)

Other articles
by authors

[Back to Top]