doi: 10.3934/jimo.2018034

Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank

1. 

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Australia

2. 

School of Information Engineering, Guangdong University of Technology, China

Received  April 2017 Revised  December 2017 Published  April 2018

This paper investigates the design of non-uniform cosine modulated filter bank (CMFB) with both finite precision coefficients and infinite precision coefficients. The finite precision filter bank has been designed to reduce the computational complexity related to the multiplication operations in the filter bank. Here, non-uniform filter bank (NUFB) is obtained by merging the appropriate filters of an uniform filter bank. An efficient optimization approach is developed for the design of non-uniform CMFB with infinite precision coefficients. A new procedure based on the discrete filled function is then developed to design the filter bank prototype filter with finite precision coefficients. Design examples demonstrate that the designed filter banks with both infinite precision coefficients and finite precision coefficients have low distortion and better performance when compared with other existing methods.

Citation: Hai Huyen Dam, Wing-Kuen Ling. Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018034
References:
[1]

F. ArgentiB. Brogelli and E. Del Re, Design of pseudo-QMF banks with rational sampling factors using several prototype filters, IEEE Trans. Signal Process., 46 (1998), 1709-1715. doi: 10.1109/78.678502.

[2]

H. H. Dam and K. L. Teo, Variable fractional delay filter design with discrete coefficients, Management, 12 (2016), 819-831.

[3]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Trans. Signal Process., 59 (2011), 6240-6244. doi: 10.1109/TSP.2011.2165951.

[4]

H. H. Dam, Optimal design of oversampled modulated filter bank, IEEE Signal Processing Letters, 24 (2017), 673-677. doi: 10.1109/LSP.2017.2685641.

[5]

H. H. Dam and S. Nordholm, Accelerated gradient with optimal step size for second-order blind signal separation, Multidimensional Systems and Signal Processing, (2017), 1-17. doi: 10.1007/s11045-017-0478-8.

[6]

H. H. DamD. Rimantho and S. Nordholm, Second-order blind signal separation with optimal step size, Speech Communication, 55 (2013), 535-543. doi: 10.1016/j.specom.2012.10.003.

[7]

H. H. DamS. Nordholm and A. Cantoni, Uniform FIR filterbank optimization with group delay specifications, IEEE Trans. Signal Process., 53 (2005), 4249-4260. doi: 10.1109/TSP.2005.857008.

[8]

H. H. DamS. NordholmA. Cantoni and J. M. de Haan, Iterative method for the design of DFT filter bank, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 51 (2004), 581-586. doi: 10.1109/TCSII.2004.836041.

[9]

Z. G. Feng and K. L. Teo, A discrete filled function method for the design og FIR filters with signed-powers-of-two coefficients, IEEE Trans. Signal Process., 56 (2008), 134-139. doi: 10.1109/TSP.2007.901164.

[10]

J. D. GriesbachT. Bose and D. M. Etter, Non-uniform filterbank bandwidth allocation for system modeling subband adaptive filters, IEEE International Conference on Acoustics, Speech, and Signal Processing, (1999), 1473-1476. doi: 10.1109/ICASSP.1999.756261.

[11]

S. Kalathil and E. Elias, Efficient design of non-uniform cosine modulated filter banks for digital hearing aids, International Journal of Electronics and Communications, 69 (2015), 1314-1320. doi: 10.1016/j.aeue.2015.05.015.

[12]

S. Kalathil and E. Elias, Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space, Journal of Advance Research, 6 (2015), 839-849. doi: 10.1016/j.jare.2014.06.008.

[13]

A. KumarG. K. Singh and S. Anurag, An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal, Journal of King Saud University -Engineering Science, 27 (2015), 158-169. doi: 10.1016/j.jksues.2013.10.001.

[14]

J. J. Lee and B. Gi Lee, A design of nonuniform cosine modulated filter banks, IEEE Trans. Circuits Syst. Ⅱ: Analog Digit. Signal Process., 42 (1995), 732-737.

[15]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, J. Ind. Manag. Optim., 12 (2016), 595-607.

[16]

D. LiY. C. LimY. Lian and J. Song, Polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Process., 50 (2002), 1935-1941.

[17]

B. Li, L. Ge and J. Zheng, An efficient channelizer based on nonuniform filter banks in 8th International Conference on Signal Processing, (2006). doi: 10.1109/ICOSP.2006.345902.

[18]

H. LinY. Wang and L. Fan, A filled function method with one parameter for unconstrained global optimization, Applied Mathematics and Computation, 218 (2011), 3776-3785. doi: 10.1016/j.amc.2011.09.022.

[19]

B. W. K. LingC. Y. F. HoK. L. TeoW. C. SiuJ. Cao and Q. Dai, Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter, IEEE Trans. Signal Process., 62 (2014), 2517-2530. doi: 10.1109/TSP.2014.2312326.

[20]

W. K. Ling and K. S. Tam, Representation of perfect reconstruction octave decomposition filter banks with set of decimators 2, 4, 4 via tree structure, IEEE Signal Processing Letters, 10 (2003), 184-186.

[21]

R. C. Nongpiur and D. J. Shpak, Maximizing the signal-to-alias ratio in non-uniform filter banks for acoustic echo cancelation, IEEE Trans Circ-I, 59 (2012), 2315-2325. doi: 10.1109/TCSI.2012.2185333.

[22]

J. Ogale and S. Ashok, Cosine modulated non-uniform filter banks, Journal of Signal and Information Processing, 2 (2011), 178-183. doi: 10.4236/jsip.2011.23024.

[23]

P. P. Vaidyanathan, Multirate Systems and Filter Banks, 1993.

[24]

C. Z. WuK. L. TeoV. Rehbock and H. H. Dam, Global optimum design of uniform FIR filter bank with magnitude constraints, IEEE Trans. Signal Process., 56 (2008), 5478-5486. doi: 10.1109/TSP.2008.927803.

[25]

C. YuK. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Processing, 95 (2014), 32-42.

show all references

References:
[1]

F. ArgentiB. Brogelli and E. Del Re, Design of pseudo-QMF banks with rational sampling factors using several prototype filters, IEEE Trans. Signal Process., 46 (1998), 1709-1715. doi: 10.1109/78.678502.

[2]

H. H. Dam and K. L. Teo, Variable fractional delay filter design with discrete coefficients, Management, 12 (2016), 819-831.

[3]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Trans. Signal Process., 59 (2011), 6240-6244. doi: 10.1109/TSP.2011.2165951.

[4]

H. H. Dam, Optimal design of oversampled modulated filter bank, IEEE Signal Processing Letters, 24 (2017), 673-677. doi: 10.1109/LSP.2017.2685641.

[5]

H. H. Dam and S. Nordholm, Accelerated gradient with optimal step size for second-order blind signal separation, Multidimensional Systems and Signal Processing, (2017), 1-17. doi: 10.1007/s11045-017-0478-8.

[6]

H. H. DamD. Rimantho and S. Nordholm, Second-order blind signal separation with optimal step size, Speech Communication, 55 (2013), 535-543. doi: 10.1016/j.specom.2012.10.003.

[7]

H. H. DamS. Nordholm and A. Cantoni, Uniform FIR filterbank optimization with group delay specifications, IEEE Trans. Signal Process., 53 (2005), 4249-4260. doi: 10.1109/TSP.2005.857008.

[8]

H. H. DamS. NordholmA. Cantoni and J. M. de Haan, Iterative method for the design of DFT filter bank, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 51 (2004), 581-586. doi: 10.1109/TCSII.2004.836041.

[9]

Z. G. Feng and K. L. Teo, A discrete filled function method for the design og FIR filters with signed-powers-of-two coefficients, IEEE Trans. Signal Process., 56 (2008), 134-139. doi: 10.1109/TSP.2007.901164.

[10]

J. D. GriesbachT. Bose and D. M. Etter, Non-uniform filterbank bandwidth allocation for system modeling subband adaptive filters, IEEE International Conference on Acoustics, Speech, and Signal Processing, (1999), 1473-1476. doi: 10.1109/ICASSP.1999.756261.

[11]

S. Kalathil and E. Elias, Efficient design of non-uniform cosine modulated filter banks for digital hearing aids, International Journal of Electronics and Communications, 69 (2015), 1314-1320. doi: 10.1016/j.aeue.2015.05.015.

[12]

S. Kalathil and E. Elias, Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space, Journal of Advance Research, 6 (2015), 839-849. doi: 10.1016/j.jare.2014.06.008.

[13]

A. KumarG. K. Singh and S. Anurag, An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal, Journal of King Saud University -Engineering Science, 27 (2015), 158-169. doi: 10.1016/j.jksues.2013.10.001.

[14]

J. J. Lee and B. Gi Lee, A design of nonuniform cosine modulated filter banks, IEEE Trans. Circuits Syst. Ⅱ: Analog Digit. Signal Process., 42 (1995), 732-737.

[15]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, J. Ind. Manag. Optim., 12 (2016), 595-607.

[16]

D. LiY. C. LimY. Lian and J. Song, Polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Process., 50 (2002), 1935-1941.

[17]

B. Li, L. Ge and J. Zheng, An efficient channelizer based on nonuniform filter banks in 8th International Conference on Signal Processing, (2006). doi: 10.1109/ICOSP.2006.345902.

[18]

H. LinY. Wang and L. Fan, A filled function method with one parameter for unconstrained global optimization, Applied Mathematics and Computation, 218 (2011), 3776-3785. doi: 10.1016/j.amc.2011.09.022.

[19]

B. W. K. LingC. Y. F. HoK. L. TeoW. C. SiuJ. Cao and Q. Dai, Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter, IEEE Trans. Signal Process., 62 (2014), 2517-2530. doi: 10.1109/TSP.2014.2312326.

[20]

W. K. Ling and K. S. Tam, Representation of perfect reconstruction octave decomposition filter banks with set of decimators 2, 4, 4 via tree structure, IEEE Signal Processing Letters, 10 (2003), 184-186.

[21]

R. C. Nongpiur and D. J. Shpak, Maximizing the signal-to-alias ratio in non-uniform filter banks for acoustic echo cancelation, IEEE Trans Circ-I, 59 (2012), 2315-2325. doi: 10.1109/TCSI.2012.2185333.

[22]

J. Ogale and S. Ashok, Cosine modulated non-uniform filter banks, Journal of Signal and Information Processing, 2 (2011), 178-183. doi: 10.4236/jsip.2011.23024.

[23]

P. P. Vaidyanathan, Multirate Systems and Filter Banks, 1993.

[24]

C. Z. WuK. L. TeoV. Rehbock and H. H. Dam, Global optimum design of uniform FIR filter bank with magnitude constraints, IEEE Trans. Signal Process., 56 (2008), 5478-5486. doi: 10.1109/TSP.2008.927803.

[25]

C. YuK. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Processing, 95 (2014), 32-42.

Figure 1.  Uniform CMFB with $M$ subbands
Figure 2.  Non-uniform CMFB with $\bar{M}$ subbands
Figure 3.  Magnitude response for the 5-channel non-uniform CMFB with decimation factor (4, 4, 8, 8, 4) and infinite precision coefficients
Figure 4.  Amplitude distortion for the 5-channel non-uniform CMFB with decimation factor (4, 4, 8, 8, 4) and infinite precision coefficients
Figure 5.  Magnitude response for the 4-channel non-uniform CMFB with decimation factor (8, 8, 4, 2) and infinite precision coefficients for -85 dB restriction in the prototype filter stopband
Figure 6.  Amplitude distortion for the 4-channel non-uniform CMFB with decimation factor (8, 8, 4, 2) and infinite precision coefficients for -85 dB restriction in the prototype filter stopband
Figure 7.  Magnitude response for the 4-channel non-uniform CMFB with decimation factor (8, 8, 4, 2) and infinite precision coefficients for -90 dB restriction in the prototype filter stopband
Figure 8.  Amplitude distortion for the 4-channel non-uniform CMFB with decimation factor (8, 8, 4, 2) and infinite precision coefficients for -90 dB restriction in the prototype filter stopband
Figure 9.  Magnitude response for the 4-channel non-uniform CMFB with decimation factor (8, 8, 4, 2) and finite precision coefficients
Figure 10.  Amplitude distortion for the 4-channel non-uniform CMFB with decimation factor (8, 8, 4, 2) and finite precision coefficients
Table 1.  Non-uniform (4, 4, 8, 8, 4) CMFB with infinite precision coefficients and N = 154
MethodsAmplitude
distortion
Stopband
attenuation
Weighted Chebyshev in [12]0.0042-60.65 dB
WCLS approach in [12]0.0029-61.49 dB
Window method [13] with As=650.0067-69.85 dB
Window method [13] with As=65 as the initial to (12) with a constraint of -65 dB for prototype filter stopband0.0014-65.00 dB
Proposed method with As=65 and a constraint of -65 dB for prototype filter stopband0.00048-78.23 dB
MethodsAmplitude
distortion
Stopband
attenuation
Weighted Chebyshev in [12]0.0042-60.65 dB
WCLS approach in [12]0.0029-61.49 dB
Window method [13] with As=650.0067-69.85 dB
Window method [13] with As=65 as the initial to (12) with a constraint of -65 dB for prototype filter stopband0.0014-65.00 dB
Proposed method with As=65 and a constraint of -65 dB for prototype filter stopband0.00048-78.23 dB
Table 2.  Non-uniform (8, 8, 4, 2) CMFB with infinite precision coefficients
NMethodsAmplitude dist.Stopband att.
154Weighted Chebyshev [12]0.0039-60.65 dB
WCLS [12]0.0028-61.49 dB
Optimal solution with As=650.00061-71.44 dB
198 Method in [13] as quoted in [12]0.0025-79.65 dB
Method in [13] with As=800.0021-89.95 dB
Proposed method with restriction of -85 dB for prototype filter stopband0.0011-85.00 dB
Proposed method with restriction of -90 dB for prototype filter stopband0.0012-90.01 dB
NMethodsAmplitude dist.Stopband att.
154Weighted Chebyshev [12]0.0039-60.65 dB
WCLS [12]0.0028-61.49 dB
Optimal solution with As=650.00061-71.44 dB
198 Method in [13] as quoted in [12]0.0025-79.65 dB
Method in [13] with As=800.0021-89.95 dB
Proposed method with restriction of -85 dB for prototype filter stopband0.0011-85.00 dB
Proposed method with restriction of -90 dB for prototype filter stopband0.0012-90.01 dB
Table 3.  Non-uniform (8, 8, 4, 2) CMFB with finite precision coefficients and N = 154
SPTMethodsAmplitude dist.Stopband att.Total adders
Inf. precision sol. As=900.0017-90.00 dB-
Q=250Quantized solution0.0018-81.57 dB250
$ \epsilon_{d}$=-58 dBLocal optimal0.000696-72.63 dB250
Optimal solution0.000318-66.52 dB250
Q=260Quantized solution0.0019-81.63 dB256
$\epsilon_{d} $=-58 dBLocal optimal0.000684-71.56 dB263
Optimal solution0.000312-67.84 dB268
Method in [12] using GA0.0058-56.25 dB266
SPTMethodsAmplitude dist.Stopband att.Total adders
Inf. precision sol. As=900.0017-90.00 dB-
Q=250Quantized solution0.0018-81.57 dB250
$ \epsilon_{d}$=-58 dBLocal optimal0.000696-72.63 dB250
Optimal solution0.000318-66.52 dB250
Q=260Quantized solution0.0019-81.63 dB256
$\epsilon_{d} $=-58 dBLocal optimal0.000684-71.56 dB263
Optimal solution0.000312-67.84 dB268
Method in [12] using GA0.0058-56.25 dB266
Table 4.  Non-uniform (8, 8, 4, 2) CMFB with finite precision coefficients and N = 198
SPTMethodsAmplitude dist.Stopband att.Total adders
Inf. precision sol. $A_s $=900.0012-90.00 dB-
Q=290Quantized solution0.0013-77.28 dB290
$\epsilon_{d} $=-75 dBLocal optimal0.000715-75.12 dB289
Optimal solution0.000498-75.30 dB290
Q=300Quantized solution0.0014-77.14 dB300
$\epsilon_{d} $=-75 dBLocal optimal0.00078-76.16 dB300
Optimal solution0.000505-75.10 dB300
Method in [12] using GA0.003-62.30 dB315
SPTMethodsAmplitude dist.Stopband att.Total adders
Inf. precision sol. $A_s $=900.0012-90.00 dB-
Q=290Quantized solution0.0013-77.28 dB290
$\epsilon_{d} $=-75 dBLocal optimal0.000715-75.12 dB289
Optimal solution0.000498-75.30 dB290
Q=300Quantized solution0.0014-77.14 dB300
$\epsilon_{d} $=-75 dBLocal optimal0.00078-76.16 dB300
Optimal solution0.000505-75.10 dB300
Method in [12] using GA0.003-62.30 dB315
[1]

H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044

[2]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[3]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[4]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[5]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[6]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[7]

Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014

[8]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[9]

Hong Il Cho, Gang Uk Hwang. Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization. Journal of Industrial & Management Optimization, 2011, 7 (3) : 607-622. doi: 10.3934/jimo.2011.7.607

[10]

H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences & Engineering, 2015, 12 (4) : 739-760. doi: 10.3934/mbe.2015.12.739

[11]

Faustino Maestre, Pablo Pedregal. Dynamic materials for an optimal design problem under the two-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 973-990. doi: 10.3934/dcds.2009.23.973

[12]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial & Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595

[13]

Pablo Pedregal. Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design. Electronic Research Announcements, 2001, 7: 72-78.

[14]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[15]

Santiago Campos-Barreiro, Jesús López-Fidalgo. KL-optimal experimental design for discriminating between two growth models applied to a beef farm. Mathematical Biosciences & Engineering, 2016, 13 (1) : 67-82. doi: 10.3934/mbe.2016.13.67

[16]

Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks & Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315

[17]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[18]

Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57

[19]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[20]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (24)
  • HTML views (373)
  • Cited by (0)

Other articles
by authors

[Back to Top]