• Previous Article
    Second-order optimality conditions for cone constrained multi-objective optimization
  • JIMO Home
  • This Issue
  • Next Article
    Parameter identification and numerical simulation for the exchange coefficient of dissolved oxygen concentration under ice in a boreal lake
doi: 10.3934/jimo.2018028

Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers

Professor Emeritus, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8573, Japan

The reviewing process of this paper was handled by Yutaka Takahashi and Wuyi Yue

Received  January 2017 Revised  June 2017 Published  February 2018

Fund Project: The author is supported by the Grant-in-Aid for Scientific Research (C) No. 26330354 from the Japan Society for the Promotion of Science (JSPS) in the academic year 2016

We consider an M/M/$ m$ preemptive-resume last-come first-served (PR-LCFS) queue without exogenous priority classes of impatient customers. We focus on analyzing the time interval from the arrival to either service completion or abandonment for an arbitrary customer. We formulate the problem as a one-dimensional birth-and-death process with two absorbing states, and consider the first passage times in this process. We give explicit expressions for the probabilities of service completion and abandonment. Furthermore, we present sets of recursive computational formulas for calculating the mean and second moment of the times until service completion and abandonment. The two special cases of a preemptive-loss system and an ordinary M/M/$ m$ queue with patient customers only, both incorporating the preemptive LCFS discipline, are treated separately. We show some numerical examples in order to demonstrate the computation of theoretical formulas.

Citation: Hideaki Takagi. Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018028
References:
[1]

R. B. Cooper, Introduction to Queueing Theory, 2$ ^{nd}$ edition, Elsevier North Holland, New York, 1981.

[2]

N. Gautam, Analysis of Queues: Methods and Applications, CRC Press, Boca Raton, Florida, 2012.

[3]

B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, 2$ ^{nd}$ edition, revised and supplemented. Translated by Samuel Kotz, Springer-Verlag, New York, 1994.

[4]

F. Iravani and B. Balcio$ {\tilde {\rm g}}$lu, On priority queues with impatient customers, Queueing Systems, 58 (2008), 239-260. doi: 10.1007/s11134-008-9069-6.

[5]

D. L. Jagerman, Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000.

[6]

O. Jouini, Analysis of a last come first served queueing system with customer abandonment, Computers & Operations Research, 39 (2012), 3040-3045. doi: 10.1016/j.cor.2012.03.009.

[7]

O. Jouini and A. Roubos, On multiple priority multi-server queues with impatience, Journal of the Operational Research Society, 65 (2014), 616-632.

[8]

G. P. Klimow, Bedienungsprozesse, Birkhäuser, Basel, 1979.

[9]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall, Boca Raton, Florida, 1995.

[10]

A. Mandelbaum and S. Zeltyn, Service engineering in action: The Palm/Erlang-A queue, with applications to call centers, in Advances in Services Innovations (eds. D. Spath and K. -P. Fähnrich), Springer, (2007), 17-45

[11]

A. Myskja and O. Espvik (editors), Tore Olaus Engset, 1865-1943, The Man Behind the Formula, Tapir Academic Press, Trondheim, Norway, 2002

[12]

C. Palm, Etude des délais d'attente, Ericsson Technics, 5 (1937), 39-56, cited in [14].

[13]

C. Palm, Research on telephone traffic carried by full availability groups, Tele, 1 (1957), 1-107 (English translation of results first published in 1946 in Swedish in the same journal, then entitled Tekniska Meddelanden från Kungliga Telegrafstyrelsen.), cited in [10] and [14].

[14]

J. Riordan, Stochastic Service Systems, John Wiley & Sons, New York, 1962.

[15]

S. Subba Rao, Queuing with balking and reneging in M/G/1 systems, Metrika, (1967/68), 173-188. doi: 10.1007/BF02613493.

[16]

H. Takagi, Waiting time in the M/M/$ m / ( m + c ) $ queue with impatient customers, International Journal of Pure and Applied Mathematics, 90 (2014), 519-559. doi: 10.12732/ijpam.v90i4.13.

[17]

H. Takagi, Waiting time in the M/M/$ m $ FCFS nonpreemptive priority queue with impatient customers, International Journal of Pure and Applied Mathematics, 97 (2014), 311-344. doi: 10.12732/ijpam.v97i3.5.

[18]

H. Takagi, Waiting time in the M/M/$ m $ LCFS nonpreemptive priority queue with impatient customers, Annals of Operations Research, 247 (2016), 257-289. doi: 10.1007/s10479-015-1876-7.

[19]

H. Takagi, Times to service completion and abandonment in the M/M/$ m$ preemptive LCFS queue with impatient customers QTNA'16, 2016, Wellington, New Zealand, ACM ISBN 978-1-4503-4842-3/16/12. doi: 10.1145/3016032.3016036.

[20]

H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, 3$ ^{rd}$ edition, Academic Press, San Diego, California, 1998.

[21]

W. Whitt, Engineering solution of a basic call-center model, Management Science, 51 (2005), 221-235. doi: 10.1287/mnsc.1040.0302.

[22]

R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood Cliffs, New Jersey, 1989.

show all references

References:
[1]

R. B. Cooper, Introduction to Queueing Theory, 2$ ^{nd}$ edition, Elsevier North Holland, New York, 1981.

[2]

N. Gautam, Analysis of Queues: Methods and Applications, CRC Press, Boca Raton, Florida, 2012.

[3]

B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, 2$ ^{nd}$ edition, revised and supplemented. Translated by Samuel Kotz, Springer-Verlag, New York, 1994.

[4]

F. Iravani and B. Balcio$ {\tilde {\rm g}}$lu, On priority queues with impatient customers, Queueing Systems, 58 (2008), 239-260. doi: 10.1007/s11134-008-9069-6.

[5]

D. L. Jagerman, Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000.

[6]

O. Jouini, Analysis of a last come first served queueing system with customer abandonment, Computers & Operations Research, 39 (2012), 3040-3045. doi: 10.1016/j.cor.2012.03.009.

[7]

O. Jouini and A. Roubos, On multiple priority multi-server queues with impatience, Journal of the Operational Research Society, 65 (2014), 616-632.

[8]

G. P. Klimow, Bedienungsprozesse, Birkhäuser, Basel, 1979.

[9]

V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Chapman & Hall, Boca Raton, Florida, 1995.

[10]

A. Mandelbaum and S. Zeltyn, Service engineering in action: The Palm/Erlang-A queue, with applications to call centers, in Advances in Services Innovations (eds. D. Spath and K. -P. Fähnrich), Springer, (2007), 17-45

[11]

A. Myskja and O. Espvik (editors), Tore Olaus Engset, 1865-1943, The Man Behind the Formula, Tapir Academic Press, Trondheim, Norway, 2002

[12]

C. Palm, Etude des délais d'attente, Ericsson Technics, 5 (1937), 39-56, cited in [14].

[13]

C. Palm, Research on telephone traffic carried by full availability groups, Tele, 1 (1957), 1-107 (English translation of results first published in 1946 in Swedish in the same journal, then entitled Tekniska Meddelanden från Kungliga Telegrafstyrelsen.), cited in [10] and [14].

[14]

J. Riordan, Stochastic Service Systems, John Wiley & Sons, New York, 1962.

[15]

S. Subba Rao, Queuing with balking and reneging in M/G/1 systems, Metrika, (1967/68), 173-188. doi: 10.1007/BF02613493.

[16]

H. Takagi, Waiting time in the M/M/$ m / ( m + c ) $ queue with impatient customers, International Journal of Pure and Applied Mathematics, 90 (2014), 519-559. doi: 10.12732/ijpam.v90i4.13.

[17]

H. Takagi, Waiting time in the M/M/$ m $ FCFS nonpreemptive priority queue with impatient customers, International Journal of Pure and Applied Mathematics, 97 (2014), 311-344. doi: 10.12732/ijpam.v97i3.5.

[18]

H. Takagi, Waiting time in the M/M/$ m $ LCFS nonpreemptive priority queue with impatient customers, Annals of Operations Research, 247 (2016), 257-289. doi: 10.1007/s10479-015-1876-7.

[19]

H. Takagi, Times to service completion and abandonment in the M/M/$ m$ preemptive LCFS queue with impatient customers QTNA'16, 2016, Wellington, New Zealand, ACM ISBN 978-1-4503-4842-3/16/12. doi: 10.1145/3016032.3016036.

[20]

H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, 3$ ^{rd}$ edition, Academic Press, San Diego, California, 1998.

[21]

W. Whitt, Engineering solution of a basic call-center model, Management Science, 51 (2005), 221-235. doi: 10.1287/mnsc.1040.0302.

[22]

R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood Cliffs, New Jersey, 1989.

Figure 1.  State transitions for the customer behavior until service completion or abandonment
Figure 2.  Mean number of customers in service and the probability of service completion
Figure 3.  Mean number of waiting customers and the probability of abandonment
Figure 4.  Mean number of customers in the system and the mean time until departure
Figure 5.  Second and third moments of the time until departure
Figure 6.  Conditional mean times until service completion and abandonment
Figure 7.  Conditional second moments of the times until service completion and abandonment
Figure 8.  Probabilities of service completion and abandonment and moments of the time until departure in an M/M/$ m $ preemptive-loss LCFS system
Figure 9.  Means and second moments of the times until service completion and abandonment in an M/M/$ m $ preemptive-loss LCFS system
Figure 10.  System and customer performance measures in an M/M/$ m $ preemptive LCFS queue with patient customers only
Table 1.  Numerical example for the probabilities and moments of the times until service completion and abandonment
Parameter setting: $ m = 5, \mu = 1, \theta = 2 $, and $ \lambda = 10 $ ($ \rho = 2 $ and $ \theta = 2 $).
$ k $ $ P _k \{ {\rm Sr} \} $ $ P _k \{ {\rm Ab} \} $ $ E [ T _k ] $ $ E [ T _k , {\rm Sr} ] $ $ E [ T _k , {\rm Ab} ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^2 , {\rm Sr} ] $ $ E [ T _k ^2 , {\rm Ab} ] $ $ E [ T _k ^3 ] $
0 0.48730 0.51270 0.74365 0.19074 0.55291 0.93439 0.14509 0.78930 1.61923
1 0.43604 0.56396 0.71802 0.16108 0.55693 0.87910 0.12145 0.75765 1.50083
2 0.37451 0.62549 0.68726 0.13062 0.55663 0.81788 0.09902 0.71886 1.37535
3 0.29966 0.70034 0.64983 0.10014 0.54969 0.74997 0.07831 0.67166 1.24242
4 0.20717 0.79283 0.60358 0.07105 0.53254 0.67463 0.05990 0.61473 1.10179
5 0.09089 0.90911 0.54544 0.04579 0.49965 0.59124 0.04432 0.54692 0.95333
6 0.05093 0.94907 0.52546 0.03324 0.49223 0.55870 0.03623 0.52247 0.89240
7 0.03314 0.96686 0.51657 0.02601 0.49056 0.54257 0.03117 0.51141 0.86061
8 0.02376 0.97624 0.51188 0.02138 0.49050 0.53326 0.02764 0.50562 0.84136
9 0.01819 0.98181 0.50910 0.01820 0.49090 0.52729 0.02502 0.50227 0.82847
10 0.01459 0.98541 0.50730 0.01588 0.49142 0.52317 0.02297 0.50020 0.81921
11 0.01211 0.98789 0.50605 0.01411 0.49194 0.52017 0.02132 0.49885 0.81223
12 0.01031 0.98969 0.50516 0.01273 0.49243 0.51788 0.01995 0.49794 0.80675
13 0.00896 0.99104 0.50448 0.01161 0.49287 0.51609 0.01879 0.49730 0.80232
14 0.00790 0.99210 0.50395 0.01069 0.49326 0.51464 0.01780 0.49684 0.79865
15 0.00707 0.99293 0.50353 0.00991 0.49362 0.51345 0.01693 0.49652 0.79556
16 0.00638 0.99362 0.50319 0.00925 0.49394 0.51245 0.01617 0.49628 0.79292
17 0.00582 0.99418 0.50291 0.00868 0.49423 0.51159 0.01549 0.49611 0.79062
18 0.00534 0.99466 0.50267 0.00819 0.49449 0.51086 0.01488 0.49598 0.78860
19 0.00494 0.99506 0.50247 0.00775 0.49472 0.51022 0.01433 0.49589 0.78682
20 0.00459 0.99541 0.50229 0.00736 0.49493 0.50965 0.01383 0.49583 0.78522
Parameter setting: $ m = 5, \mu = 1, \theta = 2 $, and $ \lambda = 10 $ ($ \rho = 2 $ and $ \theta = 2 $).
$ k $ $ P _k \{ {\rm Sr} \} $ $ P _k \{ {\rm Ab} \} $ $ E [ T _k ] $ $ E [ T _k , {\rm Sr} ] $ $ E [ T _k , {\rm Ab} ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^2 , {\rm Sr} ] $ $ E [ T _k ^2 , {\rm Ab} ] $ $ E [ T _k ^3 ] $
0 0.48730 0.51270 0.74365 0.19074 0.55291 0.93439 0.14509 0.78930 1.61923
1 0.43604 0.56396 0.71802 0.16108 0.55693 0.87910 0.12145 0.75765 1.50083
2 0.37451 0.62549 0.68726 0.13062 0.55663 0.81788 0.09902 0.71886 1.37535
3 0.29966 0.70034 0.64983 0.10014 0.54969 0.74997 0.07831 0.67166 1.24242
4 0.20717 0.79283 0.60358 0.07105 0.53254 0.67463 0.05990 0.61473 1.10179
5 0.09089 0.90911 0.54544 0.04579 0.49965 0.59124 0.04432 0.54692 0.95333
6 0.05093 0.94907 0.52546 0.03324 0.49223 0.55870 0.03623 0.52247 0.89240
7 0.03314 0.96686 0.51657 0.02601 0.49056 0.54257 0.03117 0.51141 0.86061
8 0.02376 0.97624 0.51188 0.02138 0.49050 0.53326 0.02764 0.50562 0.84136
9 0.01819 0.98181 0.50910 0.01820 0.49090 0.52729 0.02502 0.50227 0.82847
10 0.01459 0.98541 0.50730 0.01588 0.49142 0.52317 0.02297 0.50020 0.81921
11 0.01211 0.98789 0.50605 0.01411 0.49194 0.52017 0.02132 0.49885 0.81223
12 0.01031 0.98969 0.50516 0.01273 0.49243 0.51788 0.01995 0.49794 0.80675
13 0.00896 0.99104 0.50448 0.01161 0.49287 0.51609 0.01879 0.49730 0.80232
14 0.00790 0.99210 0.50395 0.01069 0.49326 0.51464 0.01780 0.49684 0.79865
15 0.00707 0.99293 0.50353 0.00991 0.49362 0.51345 0.01693 0.49652 0.79556
16 0.00638 0.99362 0.50319 0.00925 0.49394 0.51245 0.01617 0.49628 0.79292
17 0.00582 0.99418 0.50291 0.00868 0.49423 0.51159 0.01549 0.49611 0.79062
18 0.00534 0.99466 0.50267 0.00819 0.49449 0.51086 0.01488 0.49598 0.78860
19 0.00494 0.99506 0.50247 0.00775 0.49472 0.51022 0.01433 0.49589 0.78682
20 0.00459 0.99541 0.50229 0.00736 0.49493 0.50965 0.01383 0.49583 0.78522
Table 2.  Numerical example for the probabilities and moments of the times until service completion and abandonment in special cases
(a) M/M/$ m $ preemptive-loss LCFS system: $ m = 5, \mu = 1, \theta = \infty $, and $ \lambda = 10 $ ($ \rho = 2 $)
$ k $ $ Q _k $ $ P _k \{ {\rm Sr} \} $ $ P _k \{ {\rm Ab} \} $ $ E [ T _k ] $ $ E [ T _k , {\rm Sr} ] $ $ E [ T _k , {\rm Ab} ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^2 , {\rm Sr} ] $ $ E [ T _k ^2 , {\rm Ab} ] $ $ E [ T _k ^3 ] $
0 0.00068 0.43605 0.56395 0.43605 0.13781 0.29824 0.27561 0.07451 0.20111 0.22352
1 0.00677 0.37965 0.62035 0.37965 0.10798 0.27167 0.21597 0.05440 0.16157 0.16319
2 0.03384 0.31198 0.68802 0.31198 0.07783 0.23414 0.15567 0.03623 0.11944 0.10868
3 0.11279 0.22964 0.77036 0.22964 0.04839 0.18125 0.09678 0.02065 0.07613 0.06195
4 0.28198 0.12790 0.87210 0.12790 0.02143 0.10467 0.04286 0.00836 0.03450 0.02509
5 0.56395 0 1 0 0 0 0 0 0 0
(b) M/M/$ m $ preemptive LCFS queue with patient customers only: $ m = 5, \mu = 1, \theta = 0 $, and $ \lambda = 3 $ ($ \rho = 0.6 $)
$ k $ $ Q _k $ $ E [ T _k ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^3 ] $ $ k $ $ Q _k $ $ E [ T _k ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^3 ] $
0 0.04665 1.11808 3.09648 16.536111 0.00441 5.07289 36.2624 351.529
1 0.13994 1.15743 3.38325 18.951712 0.00264 5.57289 42.5852 432.445
2 0.20991 1.22303 3.83497 22.690813 0.00159 6.07289 49.4081 524.721
3 0.20991 1.34111 4.59908 28.9123 14 0.00095 6.57289 56.7310 629.106
4 0.15743 1.57289 6.00215 40.1720 15 0.00057 7.07289 64.5539 746.350
5 0.09446 2.07289 8.82504 62.5736 16 0.00034 7.57289 72.8768 877.203
6 0.05668 2.57289 12.1479 91.0845 17 0.00021 8.07289 81.6997 1022.41
7 0.03401 3.07289 15.9708 126.455 18 0.00012 8.57289 91.0226 1182.73
8 0.02040 3.57289 20.2937 169.434 19 0.00007 9.07289 100.845 1358.91
9 0.01224 4.07289 25.1166 220.773 20 0.00004 9.57289 111.168 1151.69
10 0.00735 4.57289 30.4395 281.221 $ E [ T _0 ^4 ] \approx 151.94 $.
(a) M/M/$ m $ preemptive-loss LCFS system: $ m = 5, \mu = 1, \theta = \infty $, and $ \lambda = 10 $ ($ \rho = 2 $)
$ k $ $ Q _k $ $ P _k \{ {\rm Sr} \} $ $ P _k \{ {\rm Ab} \} $ $ E [ T _k ] $ $ E [ T _k , {\rm Sr} ] $ $ E [ T _k , {\rm Ab} ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^2 , {\rm Sr} ] $ $ E [ T _k ^2 , {\rm Ab} ] $ $ E [ T _k ^3 ] $
0 0.00068 0.43605 0.56395 0.43605 0.13781 0.29824 0.27561 0.07451 0.20111 0.22352
1 0.00677 0.37965 0.62035 0.37965 0.10798 0.27167 0.21597 0.05440 0.16157 0.16319
2 0.03384 0.31198 0.68802 0.31198 0.07783 0.23414 0.15567 0.03623 0.11944 0.10868
3 0.11279 0.22964 0.77036 0.22964 0.04839 0.18125 0.09678 0.02065 0.07613 0.06195
4 0.28198 0.12790 0.87210 0.12790 0.02143 0.10467 0.04286 0.00836 0.03450 0.02509
5 0.56395 0 1 0 0 0 0 0 0 0
(b) M/M/$ m $ preemptive LCFS queue with patient customers only: $ m = 5, \mu = 1, \theta = 0 $, and $ \lambda = 3 $ ($ \rho = 0.6 $)
$ k $ $ Q _k $ $ E [ T _k ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^3 ] $ $ k $ $ Q _k $ $ E [ T _k ] $ $ E [ T _k ^2 ] $ $ E [ T _k ^3 ] $
0 0.04665 1.11808 3.09648 16.536111 0.00441 5.07289 36.2624 351.529
1 0.13994 1.15743 3.38325 18.951712 0.00264 5.57289 42.5852 432.445
2 0.20991 1.22303 3.83497 22.690813 0.00159 6.07289 49.4081 524.721
3 0.20991 1.34111 4.59908 28.9123 14 0.00095 6.57289 56.7310 629.106
4 0.15743 1.57289 6.00215 40.1720 15 0.00057 7.07289 64.5539 746.350
5 0.09446 2.07289 8.82504 62.5736 16 0.00034 7.57289 72.8768 877.203
6 0.05668 2.57289 12.1479 91.0845 17 0.00021 8.07289 81.6997 1022.41
7 0.03401 3.07289 15.9708 126.455 18 0.00012 8.57289 91.0226 1182.73
8 0.02040 3.57289 20.2937 169.434 19 0.00007 9.07289 100.845 1358.91
9 0.01224 4.07289 25.1166 220.773 20 0.00004 9.57289 111.168 1151.69
10 0.00735 4.57289 30.4395 281.221 $ E [ T _0 ^4 ] \approx 151.94 $.
[1]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[2]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[3]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[4]

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67

[5]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[6]

Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065

[7]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[8]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018030

[9]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial & Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[10]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[11]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[12]

Donglei Du, Xiaoyue Jiang, Guochuan Zhang. Optimal preemptive online scheduling to minimize lp norm on two processors. Journal of Industrial & Management Optimization, 2005, 1 (3) : 345-351. doi: 10.3934/jimo.2005.1.345

[13]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial & Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131

[14]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[15]

Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1

[16]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[17]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[18]

Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89

[19]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57

[20]

Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu. The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences & Engineering, 2007, 4 (4) : 739-754. doi: 10.3934/mbe.2007.4.739

2016 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]