• Previous Article
    Disaster relief routing in limited capacity road networks with heterogeneous flows
  • JIMO Home
  • This Issue
  • Next Article
    Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent
October 2018, 14(4): 1381-1396. doi: 10.3934/jimo.2018012

A power penalty method for a class of linearly constrained variational inequality

1. 

School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

* Corresponding author: M. Chen

Received  October 2016 Revised  August 2017 Published  January 2018

This paper establishes new convergence results for the power pena-lty method for a mixed complementarity problem(MiCP). The power penalty method approximates the MiCP by a nonlinear equation containing a power penalty term. The main merit of the method is that it has an exponential convergence rate with the penalty parameter when the involved function is continuous and ξ-monotone. Under the same assumptions, we establish a new upper bound for the approximation error of the solution to the nonlinear equation. We also prove that the penalty method can handle general monotone MiCPs. Then the method is used to solve a class of linearly constrained variational inequality(VI). Since the MiCP associated with a linearly constrained VI does not ξ-monotone even if the VI is ξ-monotone, we establish the new convergence result for this MiCP. We use the method to solve the asymmetric traffic assignment problem which can be reformulated as a class of linearly constrained VI. Numerical results are provided to demonstrate the efficiency of the method.

Citation: Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012
References:
[1]

M. Chen and C. C. Huang, A power penalty method for the general traffic assignment problem with elastic demand, Journal of Industrial and Management Optimization, 10 (2014), 1019-1030. doi: 10.3934/jimo.2014.10.1019.

[2]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems Springer-Verlag, New York, 2003. doi: 10.1007/b97543.

[3]

B. S. He and L. Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities, Journal of Optimization Theory & Applications, 112 (2002), 111-128. doi: 10.1023/A:1013096613105.

[4]

C. C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem, Operations Research Letters, 38 (2010), 72-76. doi: 10.1016/j.orl.2009.09.009.

[5]

C. C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 588-597. doi: 10.1016/j.na.2011.08.061.

[6]

S. Lawphongpanich and D. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Research Part B: Methodological, 18 (1984), 123-133. doi: 10.1016/0191-2615(84)90026-2.

[7]

T. D. LucaF. Facchinei and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Mathematical Programming, 75 (1996), 407-439. doi: 10.1007/BF02592192.

[8]

B. PanicucciM. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optimization Letters, 1 (2007), 171-185. doi: 10.1007/s11590-006-0002-9.

[9]

P. Patriksson, The Traffic Assignment Problem: Models and Methods VSP, Utrecht, 1994.

[10]

M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM Journal on Control & Optimization, 37 (1999), 765-776. doi: 10.1137/S0363012997317475.

[11]

K. TajiM. Fukushima and T. Ibaraki, A globally convergent newton method for solving strongly monotone variational inequalities, Mathematical Programming, 58 (1993), 369-383. doi: 10.1007/BF01581276.

[12]

S. Wang, A penalty method for a finite-dimensional obstacle problem with derivative constraints, Optimization Letters, 8 (2014), 1799-1811. doi: 10.1007/s11590-013-0651-4.

[13]

S. Wang, A penalty approach to a discretized double obstacle problem with derivative constraints, Journal of Global Optimization, 62 (2015), 775-790. doi: 10.1007/s10898-014-0262-3.

[14]

S. Wang and C. S. Huang, A power penalty method for solving a nonlinear parabolic complementarity problem, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008), 1125-1137. doi: 10.1016/j.na.2007.06.014.

[15]

S. Wang and X. Q. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2377-2394. doi: 10.1080/02331934.2014.967236.

[16]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214. doi: 10.1016/j.orl.2007.06.006.

[17]

S. WangX. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227-254. doi: 10.1007/s10957-006-9062-3.

show all references

References:
[1]

M. Chen and C. C. Huang, A power penalty method for the general traffic assignment problem with elastic demand, Journal of Industrial and Management Optimization, 10 (2014), 1019-1030. doi: 10.3934/jimo.2014.10.1019.

[2]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems Springer-Verlag, New York, 2003. doi: 10.1007/b97543.

[3]

B. S. He and L. Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities, Journal of Optimization Theory & Applications, 112 (2002), 111-128. doi: 10.1023/A:1013096613105.

[4]

C. C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem, Operations Research Letters, 38 (2010), 72-76. doi: 10.1016/j.orl.2009.09.009.

[5]

C. C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 588-597. doi: 10.1016/j.na.2011.08.061.

[6]

S. Lawphongpanich and D. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Research Part B: Methodological, 18 (1984), 123-133. doi: 10.1016/0191-2615(84)90026-2.

[7]

T. D. LucaF. Facchinei and C. Kanzow, A semismooth equation approach to the solution of nonlinear complementarity problems, Mathematical Programming, 75 (1996), 407-439. doi: 10.1007/BF02592192.

[8]

B. PanicucciM. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optimization Letters, 1 (2007), 171-185. doi: 10.1007/s11590-006-0002-9.

[9]

P. Patriksson, The Traffic Assignment Problem: Models and Methods VSP, Utrecht, 1994.

[10]

M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM Journal on Control & Optimization, 37 (1999), 765-776. doi: 10.1137/S0363012997317475.

[11]

K. TajiM. Fukushima and T. Ibaraki, A globally convergent newton method for solving strongly monotone variational inequalities, Mathematical Programming, 58 (1993), 369-383. doi: 10.1007/BF01581276.

[12]

S. Wang, A penalty method for a finite-dimensional obstacle problem with derivative constraints, Optimization Letters, 8 (2014), 1799-1811. doi: 10.1007/s11590-013-0651-4.

[13]

S. Wang, A penalty approach to a discretized double obstacle problem with derivative constraints, Journal of Global Optimization, 62 (2015), 775-790. doi: 10.1007/s10898-014-0262-3.

[14]

S. Wang and C. S. Huang, A power penalty method for solving a nonlinear parabolic complementarity problem, Nonlinear Analysis: Theory, Methods & Applications, 69 (2008), 1125-1137. doi: 10.1016/j.na.2007.06.014.

[15]

S. Wang and X. Q. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2377-2394. doi: 10.1080/02331934.2014.967236.

[16]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214. doi: 10.1016/j.orl.2007.06.006.

[17]

S. WangX. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227-254. doi: 10.1007/s10957-006-9062-3.

Figure 1.  Road Network
Table 1.  Computational Results
O-D pairMinimum costRoute flowRoute cost
1-1222.54047851.126922.540478
170.197822.540478
21.875722.540478
21.551322.540478
35.248322.540478
9-422.006421222.762622.006421
121.421922.006421
55.815522.006421
12-122.59157488.808222.591574
189.444622.591574
18.602922.591574
24.336522.591574
28.807822.591574
4-921.965890195.805121.965890
99.635821.965890
54.559121.965890
O-D pairMinimum costRoute flowRoute cost
1-1222.54047851.126922.540478
170.197822.540478
21.875722.540478
21.551322.540478
35.248322.540478
9-422.006421222.762622.006421
121.421922.006421
55.815522.006421
12-122.59157488.808222.591574
189.444622.591574
18.602922.591574
24.336522.591574
28.807822.591574
4-921.965890195.805121.965890
99.635821.965890
54.559121.965890
Table 2.  Computational results when $k = 2$
$\lambda$mhposi-hEtotal costs
5516163.83E-1131159.8244
10516163.83E-1131159.8244
15516163.83E-1131159.8244
20516163.83E-1131159.8244
25516163.83E-1131159.8244
30516163.83E-1131159.8244
35516163.83E-1131159.8244
40516163.83E-1131159.8244
45516163.83E-1131159.8244
50516163.83E-1131159.8244
$\lambda$mhposi-hEtotal costs
5516163.83E-1131159.8244
10516163.83E-1131159.8244
15516163.83E-1131159.8244
20516163.83E-1131159.8244
25516163.83E-1131159.8244
30516163.83E-1131159.8244
35516163.83E-1131159.8244
40516163.83E-1131159.8244
45516163.83E-1131159.8244
50516163.83E-1131159.8244
Table 3.  Computational results when $\lambda = 5$
$k$mhposi-hEtotal costs
1516163.83E-1131159.8244
2516163.83E-1131159.8244
3518161.31E-1031159.8244
4617162.43E-1231159.8244
$k$mhposi-hEtotal costs
1516163.83E-1131159.8244
2516163.83E-1131159.8244
3518161.31E-1031159.8244
4617162.43E-1231159.8244
[1]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[2]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[3]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

[4]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[5]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[6]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[7]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[8]

Bettina Klaus, Frédéric Payot. Paths to stability in the assignment problem. Journal of Dynamics & Games, 2015, 2 (3&4) : 257-287. doi: 10.3934/jdg.2015004

[9]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[10]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[11]

Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1085-1104. doi: 10.3934/jimo.2017091

[12]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[13]

Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241

[14]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018123

[15]

Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431

[16]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[17]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[18]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[19]

Yibing Lv, Zhongping Wan. Linear bilevel multiobjective optimization problem: Penalty approach. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-11. doi: 10.3934/jimo.2018092

[20]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]