doi: 10.3934/jimo.2018005

A threshold-based risk process with a waiting period to pay dividends

1. 

Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada

2. 

School of Risk and Actuarial Studies, Australian School of Business, University of New South Wales, Australia

3. 

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China

* Corresponding author: Jae-Kyung Woo

Received  April 2016 Revised  August 2017 Published  January 2018

Fund Project: This work has been supported by the Natural Sciences and Engineering Research Council of Canada, through the Discovery grant (#238675-2010-RGPIN) of Dr. Drekic

In this paper, a modified dividend strategy is proposed by delaying dividend payments until the insurer's surplus level remains at or above a threshold level b for a predetermined period of time h. We consider two cases depending on whether the period of time sustained at or above level b is counted either consecutively or accumulatively (referred to as standard or cumulative waiting period). In both cases, we develop a recursive computational procedure to calculate the expected total discounted dividend payments made prior to ruin for a discrete-time Sparre Andersen renewal risk process. By varying the values of b and h, a numerical study of the trade-off effects between finite-time ruin probabilities and expected total discounted dividend payments is investigated under a variety of scenarios. Finally, a generalized threshold-based strategy with a delayed dividend payment rule is studied under the compound binomial model.

Citation: Steve Drekic, Jae-Kyung Woo, Ran Xu. A threshold-based risk process with a waiting period to pay dividends. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018005
References:
[1]

J. Akahori, Some formulae for a new type of path-dependent option, Annals of Appled Probability, 5 (1995), 383-388. doi: 10.1214/aoap/1177004769.

[2]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281. doi: 10.2143/AST.32.2.1029.

[3]

A. S. Alfa and S. Drekic, Algorithmic analysis of the Sparre Andersen model in discrete time, ASTIN Bulletin, 37 (2007), 293-317. doi: 10.1017/S0515036100014872.

[4]

B. Avanzi, Strategies for dividend distribution: A review, North American Actuarial Journal, 13 (2009), 217-251. doi: 10.1080/10920277.2009.10597549.

[5]

B. Bao, A note on the compound binomial model with randomized dividend strategy, Applied Mathematics and Computation, 194 (2007), 276-286. doi: 10.1016/j.amc.2007.04.023.

[6]

S. ChengH. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model, Insurance: Mathematics and Economics, 26 (2000), 239-250. doi: 10.1016/S0167-6687(99)00053-0.

[7]

M. ChesneyM. Jeanblanc-Picqué and M. Yor, Brownian excursions and Parisian barrier options, Advances in Applied Probability, 29 (1997), 165-184. doi: 10.1017/S000186780002783X.

[8]

E. C. K. Cheung and J. T. Y. Wong, On the dual risk model with Parisian implementation delays in dividend payments, European Journal of Operational Research, 257 (2017), 159-173. doi: 10.1016/j.ejor.2016.09.018.

[9]

H. CossetteD. Landriault and E. Marceau, Ruin probabilities in the discrete time renewal risk model, Insurance: Mathematics and Economics, 38 (2006), 309-323. doi: 10.1016/j.insmatheco.2005.09.005.

[10]

I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy process, Journal of Applied Probability, 48 (2011), 984-1002. doi: 10.1017/S0021900200008573.

[11]

I. Czarna and Z. Palmowski, Dividend problem with Parisian delay for a spectrally negative Lévy process, Journal of Optimization Theory and Applications, 161 (2014), 239-256. doi: 10.1007/s10957-013-0283-y.

[12]

I. CzarnaZ. Palmowski and P. Świątek, Discrete time ruin probability with Parisian delay, Scandinavian Actuarial Journal, 2017 (2017), 854-869. doi: 10.1080/03461238.2016.1261734.

[13]

A. Dassios, The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options, Annals of Appled Probability, 5 (1995), 389-398. doi: 10.1214/aoap/1177004770.

[14]

A. Dassios and S. Wu, On barrier strategy dividends with Parisian implementation delay for classical surplus processes, Insurance: Mathematics and Economics, 45 (2009), 195-202. doi: 10.1016/j.insmatheco.2009.05.013.

[15]

B. de Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.

[16]

D. C. M. Dickson, Some comments on the compound binomial model, ASTIN Bulletin, 24 (1994), 33-45. doi: 10.2143/AST.24.1.2005079.

[17]

D. C. M. Dickson and H. R. Water, Some optimal dividends problems, ASTIN Bulletin, 34 (2004), 49-74. doi: 10.1017/S0515036100013878.

[18]

S. Drekic and A. M. Mera, Ruin analysis of a threshold strategy in a discrete-time Sparre Andersen Model, Methodology and Computing in Applied Probability, 13 (2011), 723-747. doi: 10.1007/s11009-010-9184-9.

[19]

H. U. Gerber, Mathematical fun with compound binomial process, ASTIN Bulletin, 18 (1988), 161-168. doi: 10.2143/AST.18.2.2014949.

[20]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78. doi: 10.1080/10920277.1998.10595671.

[21]

S.S. Kim and S. Drekic, Ruin analysis of a discrete-time dependent Sparre Andersen model with external financial activities and randomized dividends, Risks, 4 (2016), p2. doi: 10.3390/risks4010002.

[22]

B. KimH.-S. Kim and J. Kim, A risk model with paying dividends and random environment, Insurance: Mathematics and Economics, 42 (2008), 717-726. doi: 10.1016/j.insmatheco.2007.08.001.

[23]

D. Landriault, Randomized dividends in the compound binomial model with a general premium rate, Scandinavian Actuarial Journal, 2008 (2008), 1-15.

[24]

D. LandriaultJ.-F. Renaud and X. Zhou, An insurance risk model with Parisian implementation delays, Methodology and Computing in Applied Probability, 16 (2014), 583-607. doi: 10.1007/s11009-012-9317-4.

[25]

M. A. LkabousI. Czarna and J.-F. Renaud, Parisian ruin for a refracted Lévy process, Insurance: Mathematics and Economics, 74 (2017), 153-163. doi: 10.1016/j.insmatheco.2017.03.005.

[26]

S. Li, On a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 241-260.

[27]

S. Li, Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 271-284.

[28]

R. LoeffenI. Czarna and Z. Palmowski, Parisian ruin probability for spectrally negative Lévy process, Bernoulli, 19 (2013), 599-609. doi: 10.3150/11-BEJ404.

[29]

K. P. Pavlova and G. E. Willmot, The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 35 (2004), 267-277. doi: 10.2143/AST.32.2.1029.

[30]

A. Pechtl, Some applications of occupation times of Brownian motion with drift in mathematical finance, Journal of Applied Mathematics and Decision Sciences, 3 (1999), 63-73. doi: 10.1155/S1173912699000048.

[31]

E. S. W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN Bulletin, 19 (1989), 179-190. doi: 10.2143/AST.19.2.2014907.

[32]

D. W. Sommer, The impact of firm risk on property-liability insurance prices, Journal of Risk and Insurance, 63 (1996), 501-514. doi: 10.2307/253623.

[33]

J. Tan and X. Yang, The compound binomial model with randomized decisions on paying dividends, Insurance: Mathematics and Economics, 39 (2006), 1-18. doi: 10.1016/j.insmatheco.2006.01.001.

[34]

G. Venter and A. Underwood, Value of risk reduction, Casualty Actuary Society E-Forum, 2 (2012), 1-19.

[35]

G. E. Willmot, Ruin probabilities in the compound binomial model, Insurance: Mathematics and Economics, 12 (1993), 133-142. doi: 10.1016/0167-6687(93)90823-8.

[36]

J. T. Y. Wong and E. C. K. Cheung, On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps, Insurance: Mathematics and Economics, 65 (2015), 280-290. doi: 10.1016/j.insmatheco.2015.10.001.

[37]

J.-K. Woo, A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.

[38]

X. Wu and S. Li, On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.

show all references

References:
[1]

J. Akahori, Some formulae for a new type of path-dependent option, Annals of Appled Probability, 5 (1995), 383-388. doi: 10.1214/aoap/1177004769.

[2]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281. doi: 10.2143/AST.32.2.1029.

[3]

A. S. Alfa and S. Drekic, Algorithmic analysis of the Sparre Andersen model in discrete time, ASTIN Bulletin, 37 (2007), 293-317. doi: 10.1017/S0515036100014872.

[4]

B. Avanzi, Strategies for dividend distribution: A review, North American Actuarial Journal, 13 (2009), 217-251. doi: 10.1080/10920277.2009.10597549.

[5]

B. Bao, A note on the compound binomial model with randomized dividend strategy, Applied Mathematics and Computation, 194 (2007), 276-286. doi: 10.1016/j.amc.2007.04.023.

[6]

S. ChengH. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model, Insurance: Mathematics and Economics, 26 (2000), 239-250. doi: 10.1016/S0167-6687(99)00053-0.

[7]

M. ChesneyM. Jeanblanc-Picqué and M. Yor, Brownian excursions and Parisian barrier options, Advances in Applied Probability, 29 (1997), 165-184. doi: 10.1017/S000186780002783X.

[8]

E. C. K. Cheung and J. T. Y. Wong, On the dual risk model with Parisian implementation delays in dividend payments, European Journal of Operational Research, 257 (2017), 159-173. doi: 10.1016/j.ejor.2016.09.018.

[9]

H. CossetteD. Landriault and E. Marceau, Ruin probabilities in the discrete time renewal risk model, Insurance: Mathematics and Economics, 38 (2006), 309-323. doi: 10.1016/j.insmatheco.2005.09.005.

[10]

I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy process, Journal of Applied Probability, 48 (2011), 984-1002. doi: 10.1017/S0021900200008573.

[11]

I. Czarna and Z. Palmowski, Dividend problem with Parisian delay for a spectrally negative Lévy process, Journal of Optimization Theory and Applications, 161 (2014), 239-256. doi: 10.1007/s10957-013-0283-y.

[12]

I. CzarnaZ. Palmowski and P. Świątek, Discrete time ruin probability with Parisian delay, Scandinavian Actuarial Journal, 2017 (2017), 854-869. doi: 10.1080/03461238.2016.1261734.

[13]

A. Dassios, The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options, Annals of Appled Probability, 5 (1995), 389-398. doi: 10.1214/aoap/1177004770.

[14]

A. Dassios and S. Wu, On barrier strategy dividends with Parisian implementation delay for classical surplus processes, Insurance: Mathematics and Economics, 45 (2009), 195-202. doi: 10.1016/j.insmatheco.2009.05.013.

[15]

B. de Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.

[16]

D. C. M. Dickson, Some comments on the compound binomial model, ASTIN Bulletin, 24 (1994), 33-45. doi: 10.2143/AST.24.1.2005079.

[17]

D. C. M. Dickson and H. R. Water, Some optimal dividends problems, ASTIN Bulletin, 34 (2004), 49-74. doi: 10.1017/S0515036100013878.

[18]

S. Drekic and A. M. Mera, Ruin analysis of a threshold strategy in a discrete-time Sparre Andersen Model, Methodology and Computing in Applied Probability, 13 (2011), 723-747. doi: 10.1007/s11009-010-9184-9.

[19]

H. U. Gerber, Mathematical fun with compound binomial process, ASTIN Bulletin, 18 (1988), 161-168. doi: 10.2143/AST.18.2.2014949.

[20]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78. doi: 10.1080/10920277.1998.10595671.

[21]

S.S. Kim and S. Drekic, Ruin analysis of a discrete-time dependent Sparre Andersen model with external financial activities and randomized dividends, Risks, 4 (2016), p2. doi: 10.3390/risks4010002.

[22]

B. KimH.-S. Kim and J. Kim, A risk model with paying dividends and random environment, Insurance: Mathematics and Economics, 42 (2008), 717-726. doi: 10.1016/j.insmatheco.2007.08.001.

[23]

D. Landriault, Randomized dividends in the compound binomial model with a general premium rate, Scandinavian Actuarial Journal, 2008 (2008), 1-15.

[24]

D. LandriaultJ.-F. Renaud and X. Zhou, An insurance risk model with Parisian implementation delays, Methodology and Computing in Applied Probability, 16 (2014), 583-607. doi: 10.1007/s11009-012-9317-4.

[25]

M. A. LkabousI. Czarna and J.-F. Renaud, Parisian ruin for a refracted Lévy process, Insurance: Mathematics and Economics, 74 (2017), 153-163. doi: 10.1016/j.insmatheco.2017.03.005.

[26]

S. Li, On a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 241-260.

[27]

S. Li, Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 271-284.

[28]

R. LoeffenI. Czarna and Z. Palmowski, Parisian ruin probability for spectrally negative Lévy process, Bernoulli, 19 (2013), 599-609. doi: 10.3150/11-BEJ404.

[29]

K. P. Pavlova and G. E. Willmot, The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 35 (2004), 267-277. doi: 10.2143/AST.32.2.1029.

[30]

A. Pechtl, Some applications of occupation times of Brownian motion with drift in mathematical finance, Journal of Applied Mathematics and Decision Sciences, 3 (1999), 63-73. doi: 10.1155/S1173912699000048.

[31]

E. S. W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN Bulletin, 19 (1989), 179-190. doi: 10.2143/AST.19.2.2014907.

[32]

D. W. Sommer, The impact of firm risk on property-liability insurance prices, Journal of Risk and Insurance, 63 (1996), 501-514. doi: 10.2307/253623.

[33]

J. Tan and X. Yang, The compound binomial model with randomized decisions on paying dividends, Insurance: Mathematics and Economics, 39 (2006), 1-18. doi: 10.1016/j.insmatheco.2006.01.001.

[34]

G. Venter and A. Underwood, Value of risk reduction, Casualty Actuary Society E-Forum, 2 (2012), 1-19.

[35]

G. E. Willmot, Ruin probabilities in the compound binomial model, Insurance: Mathematics and Economics, 12 (1993), 133-142. doi: 10.1016/0167-6687(93)90823-8.

[36]

J. T. Y. Wong and E. C. K. Cheung, On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps, Insurance: Mathematics and Economics, 65 (2015), 280-290. doi: 10.1016/j.insmatheco.2015.10.001.

[37]

J.-K. Woo, A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.

[38]

X. Wu and S. Li, On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.

Figure 1.  Illustration of the threshold-based dividend strategy: Standard waiting period
Figure 2.  Illustration of the threshold-based dividend strategy: Cumulative waiting period
Figure 3.  Layering of the recursive algorithm for $V_i(u, m)$
Figure 4.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 1
Figure 5.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 2
Figure 6.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 3
Figure 7.  Plot of $V(10, 80)$ against $(h, b)$ under Distribution 2
Figure 8.  Plot of $V(10, 80)$ against $\psi(10, 80)$ under Distribution 2
Figure 9.  Convergence of $V(10, m)$ under Distribution 2
Figure 10.  Illustration of the generalized threshold-based dividend strategy
Figure 11.  Plot of $V(10,100)$ against $(h, b)$ under the generalized threshold-based dividend strategy
Figure 12.  Plot of $\psi(10,100)$ against $(h, b)$ under the generalized threshold-based dividend strategy
[1]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[2]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[3]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[4]

Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial & Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849

[5]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[6]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[7]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial & Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[8]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[9]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[10]

Zhimin Zhang. On a risk model with randomized dividend-decision times. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1041-1058. doi: 10.3934/jimo.2014.10.1041

[11]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[12]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2018066

[13]

Gongpin Cheng, Lin Xu. Optimal size of business and dividend strategy in a nonlinear model with refinancing and liquidation value. Mathematical Control & Related Fields, 2017, 7 (1) : 1-19. doi: 10.3934/mcrf.2017001

[14]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[15]

Abhyudai Singh, Roger M. Nisbet. Variation in risk in single-species discrete-time models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859-875. doi: 10.3934/mbe.2008.5.859

[16]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial & Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

[17]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235

[18]

Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197

[19]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[20]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (7)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]