April 2018, 14(2): 687-705. doi: 10.3934/jimo.2017069

A loss-averse two-product ordering model with information updating in two-echelon inventory system

1. 

School of Business, Central South University, Changsha 410083, China

2. 

School of Architecture Engineering, Jiangxi Modern Polytechnic College, Nanchang 330095, China

* Corresponding author: shenzhen@csu.edu.cn

The reviewing process was handled by Changjun Yu.

Received  December 2015 Revised  December 2016 Published  June 2017

Fund Project: The Paper is supported by NNSF grants (No. 71221061, 71210003, 71431006, 71471178, 71171201, 71671189) and NCET grant( No. NCET-11-0524)

This paper integrates the prospect theory with two-product ordering problem and adopts Bayesian forecasting model under Brownian motion to propose a loss-averse two-product ordering model with demand information updating in a two-echelon inventory system. We also derive all psychological perceived revenue functions for sixteen supply-demand cases as well as the expected value functions and prospect value function for the loss-averse retailer. To solve this model, a Monte Carlo algorithm is presented to estimate the high dimensional integrals with curved polyhedral integral region of unknown volume. Numerical results show that the optimal order quantities of both high-risk product and low-risk product vary across different psychological reference points, which are also affected by information updating, and the loss-averse retailer benefits considerably from information updating. All results suggest that our model provides a better description of the retailer$'$s actual ordering behavior than existing models.

Citation: Yanju Zhou, Zhen Shen, Renren Ying, Xuanhua Xu. A loss-averse two-product ordering model with information updating in two-echelon inventory system. Journal of Industrial & Management Optimization, 2018, 14 (2) : 687-705. doi: 10.3934/jimo.2017069
References:
[1]

L. Abdel-MalekR. Montanari and L. C. Morales, Exact, approximate, and generic iterative models for the multi-product newsboy problem with budget constraint, International Journal of Production Economics, 2 (2004), 189-198.

[2]

V. Agrawal and S. Seshadri, Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem, Manufacturing & Service Operations Management, 4 (2000), 410-423.

[3]

S. Choi and A. Ruszczyński, A multi-product risk-averse newsvendor with exponential utility function, European Journal of Operational Research, 214 (2011), 78-84.

[4]

A. DvoretzkyJ. Kiefer and J. Wolfowitz, The inventory problem: Ⅱ. Case of unknown distributions of demand, Econometrica: Journal of the Econometric Society, 20 (1952), 450-466.

[5]

L. EeckhoudtC. Gollier and H. Schlesinger, The risk-averse (and prudent) newsboy, Management Science, 5 (1995), 786-794.

[6]

G. Hadley and T. M. Whitin, Analysis of Inventory Systems, Prentice Hall, Upper Saddle River, 1994.

[7]

M. Joseph and K. Panos, On the complementary value of accurate demand information and production and supplier flexibility, Manufacturing & Service Operations Management, 2 (2002), 99-113.

[8]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 2 (1979), 263-292.

[9]

M. Khouja, The single-period (newsvendor) problem: Literature review and suggestions for future research, Omega, 5 (1999), 537-553.

[10]

A. H. L. Lau and H. S. Lau, Decision models for single-period products with two ordering opportunities, International Journal of Production Economics, 5 (1998), 57-70.

[11]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.

[12]

X. Long and J. Nasiry, Prospect theory explains newsvendor behavior: The role of reference points, Management Science, 61 (2014), 3009-3012.

[13]

L. MaY. ZhaoW. XueT. Cheng and H. Yan, Loss-averse newsvendor model with two ordering opportunities and market information updating, International Journal of Production Economics, 140 (2012), 912-921.

[14]

G. C. Mahata, A single period inventory model for incorporating two-ordering opportunities under imprecise demand information, International Journal of Industrial Engineering Computations, 2 (2011), 385-394.

[15]

J. Miltenburg and C. Pong, Order quantities for style goods with two order opportunities and Bayesian updating of demand: Part 2-capacity constraints, International Journal of Production Research, 8 (2007), 1707-1723.

[16]

J. V. Neuman and O. Morgenstern, Theory of Games and Economic Behavior, 2$^{nd}$ edition, Princeton university press, Princeton, 1994.

[17]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions, Operations Research, 2 (1999), 183-194.

[18]

R. Pindyck, Irreversible investment, capacity choice, and the value of the firm, American Economic Review, 5 (1988), 969-985.

[19]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.

[20]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 3 (2000), 404-420.

[21]

G. H. Tannous, Capital budgeting for volume flexibility equipment, Decision Sciences, 2 (1996), 157-184.

[22]

R. H. ThalerA. TverskyD. Kahneman and A Schwartz, The effect of myopia and loss aversion on risk taking: An experimental test, The Quarterly Journal of Economics, 112 (1997), 647-661.

[23]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.

[24]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.

[25]

Q. ZhangD. ZhangY. Tsao and J. Luo, Optimal ordering policy in a two-stage supply chain with advance payment for stable supply capacity, International Journal of Production Economics, 177 (2016), 34-43.

[26]

Y. ZhouX. ChenX. Xu and C. Yu, A multi-product newsvendor problem with budget and loss constraints, International Journal of Information Technology & Decision Making, 5 (2005), 1093-1110.

[27]

Y. ZhouW. Qiu and Z. Wang, Product-portfolio Ordering Analysis with Update Information in the Two-echelon: Risk Decision-making Model, Systems Engineering-Theory & Practice, 28 (2008), 9-16.

[28]

Y. ZhouR. YingX. Chen and Z. Wang, Two-product newsboy problem based on prospect theory, Journal of Management Sciences in China, 11 (2013), 17-29.

show all references

References:
[1]

L. Abdel-MalekR. Montanari and L. C. Morales, Exact, approximate, and generic iterative models for the multi-product newsboy problem with budget constraint, International Journal of Production Economics, 2 (2004), 189-198.

[2]

V. Agrawal and S. Seshadri, Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem, Manufacturing & Service Operations Management, 4 (2000), 410-423.

[3]

S. Choi and A. Ruszczyński, A multi-product risk-averse newsvendor with exponential utility function, European Journal of Operational Research, 214 (2011), 78-84.

[4]

A. DvoretzkyJ. Kiefer and J. Wolfowitz, The inventory problem: Ⅱ. Case of unknown distributions of demand, Econometrica: Journal of the Econometric Society, 20 (1952), 450-466.

[5]

L. EeckhoudtC. Gollier and H. Schlesinger, The risk-averse (and prudent) newsboy, Management Science, 5 (1995), 786-794.

[6]

G. Hadley and T. M. Whitin, Analysis of Inventory Systems, Prentice Hall, Upper Saddle River, 1994.

[7]

M. Joseph and K. Panos, On the complementary value of accurate demand information and production and supplier flexibility, Manufacturing & Service Operations Management, 2 (2002), 99-113.

[8]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 2 (1979), 263-292.

[9]

M. Khouja, The single-period (newsvendor) problem: Literature review and suggestions for future research, Omega, 5 (1999), 537-553.

[10]

A. H. L. Lau and H. S. Lau, Decision models for single-period products with two ordering opportunities, International Journal of Production Economics, 5 (1998), 57-70.

[11]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.

[12]

X. Long and J. Nasiry, Prospect theory explains newsvendor behavior: The role of reference points, Management Science, 61 (2014), 3009-3012.

[13]

L. MaY. ZhaoW. XueT. Cheng and H. Yan, Loss-averse newsvendor model with two ordering opportunities and market information updating, International Journal of Production Economics, 140 (2012), 912-921.

[14]

G. C. Mahata, A single period inventory model for incorporating two-ordering opportunities under imprecise demand information, International Journal of Industrial Engineering Computations, 2 (2011), 385-394.

[15]

J. Miltenburg and C. Pong, Order quantities for style goods with two order opportunities and Bayesian updating of demand: Part 2-capacity constraints, International Journal of Production Research, 8 (2007), 1707-1723.

[16]

J. V. Neuman and O. Morgenstern, Theory of Games and Economic Behavior, 2$^{nd}$ edition, Princeton university press, Princeton, 1994.

[17]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions, Operations Research, 2 (1999), 183-194.

[18]

R. Pindyck, Irreversible investment, capacity choice, and the value of the firm, American Economic Review, 5 (1988), 969-985.

[19]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.

[20]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 3 (2000), 404-420.

[21]

G. H. Tannous, Capital budgeting for volume flexibility equipment, Decision Sciences, 2 (1996), 157-184.

[22]

R. H. ThalerA. TverskyD. Kahneman and A Schwartz, The effect of myopia and loss aversion on risk taking: An experimental test, The Quarterly Journal of Economics, 112 (1997), 647-661.

[23]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.

[24]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.

[25]

Q. ZhangD. ZhangY. Tsao and J. Luo, Optimal ordering policy in a two-stage supply chain with advance payment for stable supply capacity, International Journal of Production Economics, 177 (2016), 34-43.

[26]

Y. ZhouX. ChenX. Xu and C. Yu, A multi-product newsvendor problem with budget and loss constraints, International Journal of Information Technology & Decision Making, 5 (2005), 1093-1110.

[27]

Y. ZhouW. Qiu and Z. Wang, Product-portfolio Ordering Analysis with Update Information in the Two-echelon: Risk Decision-making Model, Systems Engineering-Theory & Practice, 28 (2008), 9-16.

[28]

Y. ZhouR. YingX. Chen and Z. Wang, Two-product newsboy problem based on prospect theory, Journal of Management Sciences in China, 11 (2013), 17-29.

Figure 1.  The Time Line of the Event
Table 1.  Updated Demand Information Values of Two products
$\ u^{IU}_{A1}\ $ $\ \sigma^{IU2}_{A1}\ $ $\ u^{IU}_{A2}\ $ $\ \sigma^{IU2}_{A2}\ $ $\ u^{IU}_{B1}\ $ $\ \sigma^{IU2}_{B1}\ $ $\ u^{IU}_{B2}\ $ $\ \sigma^{IU2}_{B2}\ $
200123.6940063.7220057.4440059.79
$\ u^{IU}_{A1}\ $ $\ \sigma^{IU2}_{A1}\ $ $\ u^{IU}_{A2}\ $ $\ \sigma^{IU2}_{A2}\ $ $\ u^{IU}_{B1}\ $ $\ \sigma^{IU2}_{B1}\ $ $\ u^{IU}_{B2}\ $ $\ \sigma^{IU2}_{B2}\ $
200123.6940063.7220057.4440059.79
Table 2.  Optimal Order Quantity with Different Psychological Reference Points and Information Updating
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
02712814274293283.9
10002702784264282475.8
20002652734214271347.2
3000270268413427643.9
4000298280410403-235.7
5000315285460305-785.4
8000335290459303-1436.7
10000333285457302-2578.8
30000331283455301-3521.6
50000333288454300-4076.4
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
02712814274293283.9
10002702784264282475.8
20002652734214271347.2
3000270268413427643.9
4000298280410403-235.7
5000315285460305-785.4
8000335290459303-1436.7
10000333285457302-2578.8
30000331283455301-3521.6
50000333288454300-4076.4
Table 3.  Optimal Order Quantity with Different Psychological Reference Points and No Information Updating
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
0402315258.5853
1000362214250.1422
200037231623-32.983
300039241821-421.655
400041252020-1674.67
500043252218-1975.9
800045282315-3452.9
1000043272513-3987.0
3000041252612-5436.9
5000043272711-6475.8
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
0402315258.5853
1000362214250.1422
200037231623-32.983
300039241821-421.655
400041252020-1674.67
500043252218-1975.9
800045282315-3452.9
1000043272513-3987.0
3000041252612-5436.9
5000043272711-6475.8
[1]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002

[2]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-29. doi: 10.3934/jimo.2018098

[3]

Mehmet Önal, H. Edwin Romeijn. Two-echelon requirements planning with pricing decisions. Journal of Industrial & Management Optimization, 2009, 5 (4) : 767-781. doi: 10.3934/jimo.2009.5.767

[4]

Biswajit Sarkar, Arunava Majumder, Mitali Sarkar, Bikash Koli Dey, Gargi Roy. Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1085-1104. doi: 10.3934/jimo.2016063

[5]

Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012

[6]

Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080

[7]

Kebing Chen, Tiaojun Xiao. Reordering policy and coordination of a supply chain with a loss-averse retailer. Journal of Industrial & Management Optimization, 2013, 9 (4) : 827-853. doi: 10.3934/jimo.2013.9.827

[8]

Jianbin Li, Niu Yu, Zhixue Liu, Lianjie Shu. Optimal rebate strategies in a two-echelon supply chain with nonlinear and linear multiplicative demands. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1587-1611. doi: 10.3934/jimo.2016.12.1587

[9]

Fuyou Huang, Juan He, Jian Wang. Coordination of VMI supply chain with a loss-averse manufacturer under quality-dependency and marketing-dependency. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2018121

[10]

Nguyen Thi Bach Kim. Finite algorithm for minimizing the product of two linear functions over a polyhedron. Journal of Industrial & Management Optimization, 2007, 3 (3) : 481-487. doi: 10.3934/jimo.2007.3.481

[11]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[12]

Ruopeng Wang, Jinting Wang, Chang Sun. Optimal pricing and inventory management for a loss averse firm when facing strategic customers. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1521-1544. doi: 10.3934/jimo.2018019

[13]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[14]

Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243

[15]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[16]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[17]

Qing-you Yan, Juan-bo Li, Ju-liang Zhang. Licensing schemes in Stackelberg model under asymmetric information of product costs. Journal of Industrial & Management Optimization, 2007, 3 (4) : 763-774. doi: 10.3934/jimo.2007.3.763

[18]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[19]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010

[20]

Biswajit Sarkar, Bijoy Kumar Shaw, Taebok Kim, Mitali Sarkar, Dongmin Shin. An integrated inventory model with variable transportation cost, two-stage inspection, and defective items. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1975-1990. doi: 10.3934/jimo.2017027

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (39)
  • HTML views (381)
  • Cited by (0)

Other articles
by authors

[Back to Top]