• Previous Article
    Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer
  • JIMO Home
  • This Issue
  • Next Article
    A loss-averse two-product ordering model with information updating in two-echelon inventory system
April 2018, 14(2): 673-686. doi: 10.3934/jimo.2017068

Lyapunov method for stability of descriptor second-order and high-order systems

School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China

* Corresponding author: zhanggs@tju.edu.cn.

The reviewing process was handled by Bin Li.

Received  April 2016 Revised  August 2016 Published  June 2017

In this study, the stability problem of descriptor second-order systems is considered. Lyapunov equations for stability of second-order systemsare established by using Lyapunov method. The existence of solutions for Lyapunov equations are discussed and linear matrixinequality condition for stability of second-order systems aregiven. Then, based on the feasible solutions of the linear matrixinequality, all parametric solutions of Lyapunov equations are derived.Furthermore, the results of Lyapunov equations and linear matrixinequality condition for stability of second-ordersystems are extended to high-order systems. Finally, illustratingexamples are provided to show the effectiveness of the proposed method.

Citation: Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068
References:
[1]

B. D. O. Anderson and R. E. Bitmead, Stability of matrix polynomials, International Journal of Control, 26 (1977), 235-247. doi: 10.1080/00207177708922306.

[2]

D. S. Bernstein and S. P. Bhat, Lyapunov stability, semistability, and asymptotic stability of matrix second-order systems, Journal of Vibration and Acoustics, 117 (1994), 145-153. doi: 10.1109/ACC.1994.752501.

[3]

D. Y. ChenR. F. Zhang and X. Z. Liu, Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 4105-4121. doi: 10.1016/j.cnsns.2014.05.005.

[4]

L. ColomboF. Jiménez and D. Martín de Diego, Variational integrators for mechanical control systems with symmetries, Journal of Industrial and Management Optimization, 2 (2015), 193-225. doi: 10.3934/jcd.2015003.

[5]

A. M. Diwekar and R. K. Yedavalli, Stability of matrix second-order systems: New conditions and perspectives, IEEE Transaction on Automatic Control, 44 (1999), 1773-1777. doi: 10.1109/9.788551.

[6]

G. R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, 2010. doi: 10.1007/978-1-4419-6397-0.

[7]

Y. FengM. Yagoubi and P. Chevrel, Parametrization of extended stabilizing controllers for continuous-time descriptor systems, Journal of The Franklin Institute, 348 (2011), 2633-2646. doi: 10.1016/j.jfranklin.2011.08.006.

[8]

L. X. GaoW. H. Chen and Y. X. Sun, On robust admissibility condition for descriptor systems with convex polytopic uncertainty, Proceeding of the American Control Conference, 6 (2003), 5083-5088.

[9]

S. H. Huang, R. F. Zhang and D. Y. Chen, Stability of nonlinear fractional-order time varying systems Journal of Computational and Nonlinear Dynamics, w (2016), 031007. doi: 10.1115/1.4031587.

[10]

S. JohanssonB. Kågström and P. V. Dooren, Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090. doi: 10.1016/j.laa.2012.12.013.

[11]

D. T. KawanoM. Morzfeld and F. Ma, The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846. doi: 10.1016/j.jsv.2013.08.005.

[12]

H. K. Khalil, Nonlinear Systems, 3$^{rd}$ edition, Publishing House of Electronics Industry, Beijing, 2011.

[13]

P. Lancaster and P. Zizler, On the stability of gyroscopic systems, Journal of Applied Mechanics, 65 (1998), 519-522. doi: 10.1115/1.2789085.

[14]

P. Lancaster, Stability of linear gyroscopic systems: A review, Linear Algebra and its Applications, 439 (2013), 686-706. doi: 10.1016/j.laa.2012.12.026.

[15]

P. Losse and V. Mehrmann, Controllability and observability of second order descriptor systems, SIAM Journal on Control and Optimization, 47 (2008), 1351-1379. doi: 10.1137/060673977.

[16]

M. Morzfeld and F. Ma, The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161. doi: 10.1016/j.jsv.2010.09.005.

[17]

N. K. Nichols and J. Kautsky, Robust eigenstructure assignment in quadratic matrix polynomials: Nonsingular case, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 77-102. doi: 10.1137/S0895479899362867.

[18]

P. Resende and E. Kaszkurewicz, A sufficient condition for the stability of matrix, IEEE Transaction on Automatic Control, 34 (1989), 539-541. doi: 10.1109/9.24207.

[19]

L. S. ShiehM. M. Mehio and H. M. Dib, Stability of the second-order matrix polynomial, IEEE Transaction on Automatic Control, 32 (1987), 231-233. doi: 10.1109/TAC.1987.1104572.

[20]

F. Yu and Y. Mohamed, Comprehensive admissibility for descriptor systems, Automatica, 66 (2016), 271-275. doi: 10.1016/j.automatica.2016.01.028.

[21]

J. ZhangH. Ouyang and J. Yang, Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback, Journal of Sound and Vibration, 333 (2014), 1-12. doi: 10.1016/j.jsv.2013.08.040.

[22]

D. Z. Zheng, Linear System Theory, 2$^{nd}$ edition, Tsinghua University Press, Beijing, 2002.

show all references

References:
[1]

B. D. O. Anderson and R. E. Bitmead, Stability of matrix polynomials, International Journal of Control, 26 (1977), 235-247. doi: 10.1080/00207177708922306.

[2]

D. S. Bernstein and S. P. Bhat, Lyapunov stability, semistability, and asymptotic stability of matrix second-order systems, Journal of Vibration and Acoustics, 117 (1994), 145-153. doi: 10.1109/ACC.1994.752501.

[3]

D. Y. ChenR. F. Zhang and X. Z. Liu, Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 4105-4121. doi: 10.1016/j.cnsns.2014.05.005.

[4]

L. ColomboF. Jiménez and D. Martín de Diego, Variational integrators for mechanical control systems with symmetries, Journal of Industrial and Management Optimization, 2 (2015), 193-225. doi: 10.3934/jcd.2015003.

[5]

A. M. Diwekar and R. K. Yedavalli, Stability of matrix second-order systems: New conditions and perspectives, IEEE Transaction on Automatic Control, 44 (1999), 1773-1777. doi: 10.1109/9.788551.

[6]

G. R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, 2010. doi: 10.1007/978-1-4419-6397-0.

[7]

Y. FengM. Yagoubi and P. Chevrel, Parametrization of extended stabilizing controllers for continuous-time descriptor systems, Journal of The Franklin Institute, 348 (2011), 2633-2646. doi: 10.1016/j.jfranklin.2011.08.006.

[8]

L. X. GaoW. H. Chen and Y. X. Sun, On robust admissibility condition for descriptor systems with convex polytopic uncertainty, Proceeding of the American Control Conference, 6 (2003), 5083-5088.

[9]

S. H. Huang, R. F. Zhang and D. Y. Chen, Stability of nonlinear fractional-order time varying systems Journal of Computational and Nonlinear Dynamics, w (2016), 031007. doi: 10.1115/1.4031587.

[10]

S. JohanssonB. Kågström and P. V. Dooren, Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090. doi: 10.1016/j.laa.2012.12.013.

[11]

D. T. KawanoM. Morzfeld and F. Ma, The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846. doi: 10.1016/j.jsv.2013.08.005.

[12]

H. K. Khalil, Nonlinear Systems, 3$^{rd}$ edition, Publishing House of Electronics Industry, Beijing, 2011.

[13]

P. Lancaster and P. Zizler, On the stability of gyroscopic systems, Journal of Applied Mechanics, 65 (1998), 519-522. doi: 10.1115/1.2789085.

[14]

P. Lancaster, Stability of linear gyroscopic systems: A review, Linear Algebra and its Applications, 439 (2013), 686-706. doi: 10.1016/j.laa.2012.12.026.

[15]

P. Losse and V. Mehrmann, Controllability and observability of second order descriptor systems, SIAM Journal on Control and Optimization, 47 (2008), 1351-1379. doi: 10.1137/060673977.

[16]

M. Morzfeld and F. Ma, The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161. doi: 10.1016/j.jsv.2010.09.005.

[17]

N. K. Nichols and J. Kautsky, Robust eigenstructure assignment in quadratic matrix polynomials: Nonsingular case, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 77-102. doi: 10.1137/S0895479899362867.

[18]

P. Resende and E. Kaszkurewicz, A sufficient condition for the stability of matrix, IEEE Transaction on Automatic Control, 34 (1989), 539-541. doi: 10.1109/9.24207.

[19]

L. S. ShiehM. M. Mehio and H. M. Dib, Stability of the second-order matrix polynomial, IEEE Transaction on Automatic Control, 32 (1987), 231-233. doi: 10.1109/TAC.1987.1104572.

[20]

F. Yu and Y. Mohamed, Comprehensive admissibility for descriptor systems, Automatica, 66 (2016), 271-275. doi: 10.1016/j.automatica.2016.01.028.

[21]

J. ZhangH. Ouyang and J. Yang, Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback, Journal of Sound and Vibration, 333 (2014), 1-12. doi: 10.1016/j.jsv.2013.08.040.

[22]

D. Z. Zheng, Linear System Theory, 2$^{nd}$ edition, Tsinghua University Press, Beijing, 2002.

Figure 1.  State responses of systems
Figure 2.  State responses of system (16)
[1]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

[2]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[3]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[4]

He Zhang, Xue Yang, Yong Li. Lyapunov-type inequalities and solvability of second-order ODEs across multi-resonance. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1133-1148. doi: 10.3934/dcdss.2017061

[5]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[6]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[7]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[8]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[9]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[10]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[11]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[12]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[13]

Dong-Lun Wu, Chun-Lei Tang, Xing-Ping Wu. Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (1) : 57-72. doi: 10.3934/cpaa.2016.15.57

[14]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[15]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[16]

Maria Do Rosario Grossinho, Rogério Martins. Subharmonic oscillations for some second-order differential equations without Landesman-Lazer conditions. Conference Publications, 2001, 2001 (Special) : 174-181. doi: 10.3934/proc.2001.2001.174

[17]

Lassi Roininen, Petteri Piiroinen, Markku Lehtinen. Constructing continuous stationary covariances as limits of the second-order stochastic difference equations. Inverse Problems & Imaging, 2013, 7 (2) : 611-647. doi: 10.3934/ipi.2013.7.611

[18]

Cheng Wang, Jian-Guo Liu. Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 201-228. doi: 10.3934/dcdsb.2003.3.201

[19]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[20]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

2016 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]