April  2018, 14(2): 583-596. doi: 10.3934/jimo.2017061

LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback

1. 

Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet Road, Hanoi, Vietnam

2. 

Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi, Vietnam

Received  October 2016 Revised  January 2017 Published  June 2017

This paper deals with the exponential stabilization problem by means of memory state feedback controller for linear singular positive systems with delay. By using system decomposition approach, singular systems theory and Lyapunov function method, we obtain new delay-dependent sufficient conditions for designing such controllers. The conditions are given in terms of standard linear programming (LP) problems, which can be solved by LP optimal toolbox. A numerical example is given to illustrate the effectiveness of the proposed method.

Citation: Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061
References:
[1]

H. Arneson and C. Langbort, A linear programming approach to routing control in networks of constrained linear positive systems, Automatica, 48 (2012), 800-807. Google Scholar

[2]

E. K. Boukas and Y. Xia, Descriptor discrete-time systems with random abrupt changes: Stability and stabilisation, International Journal of Control, 81 (2008), 1311-1318. doi: 10.1080/00207170701769822. Google Scholar

[3]

R. Bru and S. Romero-Vivo, Positive Systems, Lecture Notes in Control and Information Sciences, vol. 389, Berlin: Springer, 2009. doi: 10.1007/978-3-642-02894-6. Google Scholar

[4]

S. L. V. Campbell, Singular Systems of Differential Equations, Boston, Mass. -London, 1980. Google Scholar

[5]

L. Dai, Singular Control Systems, Berlin: Springer, 1989. doi: 10.1007/BFb0002475. Google Scholar

[6]

Y. EbiharaD. Peaucelle and D. Arzelier, LMI approach to linear positive system analysis and synthesis, Systems & Control Letters, 63 (2014), 50-56. doi: 10.1016/j.sysconle.2013.11.001. Google Scholar

[7]

D. EfimovA. Polyakov and J. P. Richard, Interval observer design for estimation and control of time-delay descriptor systems, European Journal of Control, 23 (2015), 26-35. doi: 10.1016/j.ejcon.2015.01.004. Google Scholar

[8]

H. FanJ.-E. Feng and M. Meng, Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays, Journal of Industrial and Management Optimization, 12 (2016), 1535-1556. doi: 10.3934/jimo.2016.12.1535. Google Scholar

[9]

L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, New York: Wiley-Interscience, 2000. doi: 10.1002/9781118033029. Google Scholar

[10]

A. Ilchmann and P. H. A. Ngoc, On positivity and stability of linear time-varying Volterra equations, Positivity, 13 (2009), 671-681. Google Scholar

[11]

T. Kaczorek, Positive 1-D and 2-D Systems, Berlin: Springer, 2002.Google Scholar

[12]

J. Lam and S. Xu, Robust Control and Filtering of Singular Systems, Berlin: Springer, 2006. Google Scholar

[13]

X. Liu, Constrained control of positive systems with delays, IEEE Transactions on Automatic Control, 54 (2009), 1596-1600. doi: 10.1109/TAC.2009.2017961. Google Scholar

[14]

I. Malloci and J. Daafouz, Stabilisation of polytopic singularly perturbed linear systems, International Journal of Control, 85 (2012), 135-142. doi: 10.1080/00207179.2011.641128. Google Scholar

[15]

Y. S. MoonP. Park and W. H. Kwon, Robust stabilization of uncertain input-delayed systems using reduction method, Automatica, 37 (2001), 307-312. doi: 10.1016/S0005-1098(00)00145-X. Google Scholar

[16]

V. N. Phat and N. H. Sau, On exponential stability of linear singular positive delayed systems, Applied Mathematics Letters, 38 (2014), 67-72. doi: 10.1016/j.aml.2014.07.003. Google Scholar

[17]

M. A. Rami, Solvability of static output-feedback stabilization for LTI positive systems, Systms & Control Letters, 60 (2011), 704-708. doi: 10.1016/j.sysconle.2011.05.007. Google Scholar

[18]

M. A. RamiF. Tadeo and U. Helmke, Positive observers for linear positive systems, and their implications, International Journal of Control, 84 (2011), 716-725. Google Scholar

[19]

L. F. Shampine and P. Gahinet, Delay differential-algebraic equations in control theory, Applied Numerical Mathematics, 56 (2006), 574-588. Google Scholar

[20]

Z. Shu and J. Lam, Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays, International Journal of Control,, 81 (2008), 865-882. doi: 10.1080/00207170701261986. Google Scholar

[21]

R. J. Vanderbei, Linear Programming: Foundations and Extensions, International Series in Operations Research & Management Science, vol. 37,2001. doi: 10.1007/978-1-4757-5662-3. Google Scholar

[22]

S. XuP. DoorenR. Stefan and J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Transactions on Automatic Control, 47 (2002), 1122-1128. doi: 10.1109/TAC.2002.800651. Google Scholar

[23]

L. ZhangJ. Lam and S. Xu, On positive realness of descriptor systems, IEEE Transactions on Circuits Systems I, Fundamental Theory & Applications, 49 (2002), 401-407. Google Scholar

[24]

Y. ZhangQ. ZhangT. Tanaka and X. G. Yan, Positivity of continuous-time descriptor systems with time delays, IEEE Trans Auto. Contr., 59 (2014), 3093-3097. Google Scholar

[25]

Y. ZhaoR. Wang and C. Yin, Optimal dividends and capital injections for a spectrally positive Lévy process, Journal of Industrial and Management Optimization, 13 (2017), 1-21. doi: 10.3934/jimo.2016001. Google Scholar

[26]

B. ZhouJ. Hu and G. Duan, Strict linear matrix inequality characterization of positive realness for linear discrete-time descriptor systems, IET Control Theory & Applications, 7 (2010), 1277-1281. Google Scholar

[27]

S. ZhuZ. Li and C. Zhang, Exponential stability analysis for positive systems with delays, IET Control Theory & Applications, 6 (2012), 761-767. Google Scholar

show all references

References:
[1]

H. Arneson and C. Langbort, A linear programming approach to routing control in networks of constrained linear positive systems, Automatica, 48 (2012), 800-807. Google Scholar

[2]

E. K. Boukas and Y. Xia, Descriptor discrete-time systems with random abrupt changes: Stability and stabilisation, International Journal of Control, 81 (2008), 1311-1318. doi: 10.1080/00207170701769822. Google Scholar

[3]

R. Bru and S. Romero-Vivo, Positive Systems, Lecture Notes in Control and Information Sciences, vol. 389, Berlin: Springer, 2009. doi: 10.1007/978-3-642-02894-6. Google Scholar

[4]

S. L. V. Campbell, Singular Systems of Differential Equations, Boston, Mass. -London, 1980. Google Scholar

[5]

L. Dai, Singular Control Systems, Berlin: Springer, 1989. doi: 10.1007/BFb0002475. Google Scholar

[6]

Y. EbiharaD. Peaucelle and D. Arzelier, LMI approach to linear positive system analysis and synthesis, Systems & Control Letters, 63 (2014), 50-56. doi: 10.1016/j.sysconle.2013.11.001. Google Scholar

[7]

D. EfimovA. Polyakov and J. P. Richard, Interval observer design for estimation and control of time-delay descriptor systems, European Journal of Control, 23 (2015), 26-35. doi: 10.1016/j.ejcon.2015.01.004. Google Scholar

[8]

H. FanJ.-E. Feng and M. Meng, Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays, Journal of Industrial and Management Optimization, 12 (2016), 1535-1556. doi: 10.3934/jimo.2016.12.1535. Google Scholar

[9]

L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, New York: Wiley-Interscience, 2000. doi: 10.1002/9781118033029. Google Scholar

[10]

A. Ilchmann and P. H. A. Ngoc, On positivity and stability of linear time-varying Volterra equations, Positivity, 13 (2009), 671-681. Google Scholar

[11]

T. Kaczorek, Positive 1-D and 2-D Systems, Berlin: Springer, 2002.Google Scholar

[12]

J. Lam and S. Xu, Robust Control and Filtering of Singular Systems, Berlin: Springer, 2006. Google Scholar

[13]

X. Liu, Constrained control of positive systems with delays, IEEE Transactions on Automatic Control, 54 (2009), 1596-1600. doi: 10.1109/TAC.2009.2017961. Google Scholar

[14]

I. Malloci and J. Daafouz, Stabilisation of polytopic singularly perturbed linear systems, International Journal of Control, 85 (2012), 135-142. doi: 10.1080/00207179.2011.641128. Google Scholar

[15]

Y. S. MoonP. Park and W. H. Kwon, Robust stabilization of uncertain input-delayed systems using reduction method, Automatica, 37 (2001), 307-312. doi: 10.1016/S0005-1098(00)00145-X. Google Scholar

[16]

V. N. Phat and N. H. Sau, On exponential stability of linear singular positive delayed systems, Applied Mathematics Letters, 38 (2014), 67-72. doi: 10.1016/j.aml.2014.07.003. Google Scholar

[17]

M. A. Rami, Solvability of static output-feedback stabilization for LTI positive systems, Systms & Control Letters, 60 (2011), 704-708. doi: 10.1016/j.sysconle.2011.05.007. Google Scholar

[18]

M. A. RamiF. Tadeo and U. Helmke, Positive observers for linear positive systems, and their implications, International Journal of Control, 84 (2011), 716-725. Google Scholar

[19]

L. F. Shampine and P. Gahinet, Delay differential-algebraic equations in control theory, Applied Numerical Mathematics, 56 (2006), 574-588. Google Scholar

[20]

Z. Shu and J. Lam, Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays, International Journal of Control,, 81 (2008), 865-882. doi: 10.1080/00207170701261986. Google Scholar

[21]

R. J. Vanderbei, Linear Programming: Foundations and Extensions, International Series in Operations Research & Management Science, vol. 37,2001. doi: 10.1007/978-1-4757-5662-3. Google Scholar

[22]

S. XuP. DoorenR. Stefan and J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Transactions on Automatic Control, 47 (2002), 1122-1128. doi: 10.1109/TAC.2002.800651. Google Scholar

[23]

L. ZhangJ. Lam and S. Xu, On positive realness of descriptor systems, IEEE Transactions on Circuits Systems I, Fundamental Theory & Applications, 49 (2002), 401-407. Google Scholar

[24]

Y. ZhangQ. ZhangT. Tanaka and X. G. Yan, Positivity of continuous-time descriptor systems with time delays, IEEE Trans Auto. Contr., 59 (2014), 3093-3097. Google Scholar

[25]

Y. ZhaoR. Wang and C. Yin, Optimal dividends and capital injections for a spectrally positive Lévy process, Journal of Industrial and Management Optimization, 13 (2017), 1-21. doi: 10.3934/jimo.2016001. Google Scholar

[26]

B. ZhouJ. Hu and G. Duan, Strict linear matrix inequality characterization of positive realness for linear discrete-time descriptor systems, IET Control Theory & Applications, 7 (2010), 1277-1281. Google Scholar

[27]

S. ZhuZ. Li and C. Zhang, Exponential stability analysis for positive systems with delays, IET Control Theory & Applications, 6 (2012), 761-767. Google Scholar

Figure 1.  State response of the closed-loop system
[1]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[2]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[3]

B. Cantó, C. Coll, A. Herrero, E. Sánchez, N. Thome. Pole-assignment of discrete time-delay systems with symmetries. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 641-649. doi: 10.3934/dcdsb.2006.6.641

[4]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

[5]

Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471

[6]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[7]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[8]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[9]

Fabio S. Priuli. State constrained patchy feedback stabilization. Mathematical Control & Related Fields, 2015, 5 (1) : 141-163. doi: 10.3934/mcrf.2015.5.141

[10]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[11]

Huawen Ye, Honglei Xu. Global stabilization for ball-and-beam systems via state and partial state feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 17-29. doi: 10.3934/jimo.2016.12.17

[12]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[13]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control & Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[14]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[15]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[16]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018188

[17]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[18]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[19]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[20]

Richard H. Rand, Asok K. Sen. A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Communications on Pure & Applied Analysis, 2003, 2 (4) : 567-577. doi: 10.3934/cpaa.2003.2.567

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (64)
  • HTML views (496)
  • Cited by (0)

Other articles
by authors

[Back to Top]