January 2018, 14(1): 19-33. doi: 10.3934/jimo.2017035

$\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method

1. 

School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621000, China

2. 

Mianyang Polytechnic, Mianyang 621000, China

* Corresponding author: Lin Du

Received  April 2015 Revised  February 2017 Published  April 2017

Fund Project: This work was supported by the National Natural Science Foundation of China under Grant No. 61603312

In this paper, the $\mathcal{H}_∞$ filtering problem of switched nonlinear system with linear hyper plane switching surface is investigated. A state projection method is introduced to ensure the stability of error system and guarantee a prescribed disturbance attenuation level in the $\mathcal{H}_∞$ sense, by designing filter gains for each subsystem via solving a set of LMIs and formulating a state projection relation for filter state at switching instant. It is worthwhile to note that the state projection relation is deduced by both Lyapunov functions and the switching surface, which implies the state projection method is suitable for switched system with linear hyper plane switching surface. Finally, a numerical example is provided to illustrate our theoretic findings in this paper.

Citation: Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035
References:
[1]

A. BalluchiM. D. BenedettoC. PinelloC. Rossi and A. Sangiovanni-Vincentelli, Cut-off in engine control: A hybrid system approach, Proceedings of the 36th IEEE Conference on Decision and Control, 5 (1997), 4720-4725. doi: 10.1109/CDC.1997.649753.

[2]

B. E. Bishop and M. W. Spong, Control of redundant manipulators using logic-based switching, Proceedings of the 36th IEEE Conference on Decision and Control, 2 (1998), 16-18. doi: 10.1109/CDC.1998.758498.

[3]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control, 43 (1998), 475-482. doi: 10.1109/9.664150.

[4]

J. CaiC. WenH. Su and Z. Liu, Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 58 (2013), 2388-2394. doi: 10.1109/TAC.2013.2251795.

[5]

Y. Chen and W. X. Zheng, Stochastic state estimation for neural networks with distributed delays and Markovian jump, Neural Networks, 25 (2012), 14-20. doi: 10.1016/j.neunet.2011.08.002.

[6]

D. DuB. JiangP. Shi and S. Zhou, H filtering of discrete-time switched systems with state delays via switched Lyapunov function approach, IEEE Transactions on Automatic Control, 52 (2007), 1520-1524. doi: 10.1109/TAC.2007.902777.

[7]

A. Elsayed and M. Grimble, A new approach to design for optimal digital linear filters, IMA J. Math. Control Inf, 6 (1989), 233-251. doi: 10.1093/imamci/6.2.233.

[8]

J. P. HespanhaD. Liberzon and A. S. Morse, Stability of switched systems with average dwell time, Proceedings of 38th Conference on Decision and Control, (1999), 2655-2660. doi: 10.1109/CDC.1999.831330.

[9]

K. Hu and J. Yuan, Improved robust H filtering for uncertain discrete-time switched systems, IET Control Theory Applications, 3 (2009), 315-324. doi: 10.1049/iet-cta:20070253.

[10]

D. Koenig and B. Marx, H filtering and state feedback control for discrete-time switched descriptor systems, IET Control Theory Applications, 3 (2009), 661-670. doi: 10.1049/iet-cta.2008.0132.

[11]

D. LeithR. ShortenW. Leithead and O. Mason, Issue in the design of switched linear control systems: A benchmark study, International Journal of Adaptive Control, 17 (2003), 103-118. doi: 10.1002/acs.741.

[12]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009.

[13]

R. LuB. Lou and A.-K. Xue, Mode-dependent quantised $H_∞$ filtering for Markovian jump singular system, International Journal of Systems Science, 46 (2015), 1817-1824. doi: 10.1080/00207721.2013.837539.

[14]

A. S. Morse, Supervisory control of families of linear set-point controllers, part 1: Exact matching, IEEE Transactions on Automatic Control, 41 (1996), 1413-1431. doi: 10.1109/9.539424.

[15]

K. S. Narendra and J. A. Balakrishnan, Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control, 39 (1994), 2469-2471. doi: 10.1109/9.362846.

[16]

P. ShiM. Mahmoud and S. Nguang, Robust filtering for jumping systems with modedependent delays, Signal Process, 86 (2006), 140-152. doi: 10.1016/j.sigpro.2005.05.005.

[17]

Y. TangH. GaoW. Zou and J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings, IEEE Transactions On Cybernetics, 43 (2013), 358-370. doi: 10.1109/TSMCB.2012.2207718.

[18]

W. XiangJ. Xiao and N. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773. doi: 10.1016/j.nahs.2011.08.001.

[19]

W. Xiang and J. Xiao, H filtering for switched nonlinear systems under asynchronous switching, International Journal of System Science, 42 (2011), 751-765. doi: 10.1080/00207721.2010.488763.

[20]

W. XiangJ. Xiao and M. N. Iqbal, Fault detection for switched nonlinear systems under asynchronous switching, International Journal of Control, 84 (2011), 1362-1376. doi: 10.1080/00207179.2011.598191.

[21]

W. Xiang and J. Xiao, Stabilization of switched continuous-time system with all modes unstable via dwell time switching, Automatica, 50 (2014), 940-945. doi: 10.1016/j.automatica.2013.12.028.

[22]

Z. XiangC. Liang and M. S. Mahmoud, Robust L2L filtering for switched time-delay systems with missing measurements, Circuits, Systems, and Signal Processing, 31 (2012), 1677-1697. doi: 10.1007/s00034-012-9396-z.

[23]

Z. XiangC. Qiao and S. Mahmoud, Robust H filtering for switched stochastic systems under asynchronous switching, Journal of the Franklin Institute, 349 (2012), 1213-1230. doi: 10.1016/j.jfranklin.2012.01.008.

[24]

Z. XiangC. Liang and Q. Chen, Robust L2L filtering for switched systems under asynchronous switching, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3303-3318. doi: 10.1016/j.cnsns.2010.10.029.

[25]

D. XieL. Wang and F. Hao, Robust stability analysis and control synthesis for discrete-time uncertain switched systems, Proceedings of Conference on Decision and Control, (2003), 4812-4817.

[26]

S. XuJ. Lam and Y. Zou, H filtering for singular systems, IEEE Transactions on Automatic Control, 48 (2003), 2217-2222. doi: 10.1109/TAC.2003.820149.

[27]

G. S. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, Proceedings of the American Control Conference, (2000), 200-204. doi: 10.1109/ACC.2000.878825.

[28]

B. Zhang and S. Xu, Robust $H_∞$ filtering for uncertain discrete piecewise time-delay systems, International Journal of Control, 80 (2007), 636-645. doi: 10.1080/00207170601131982.

[29]

W. ZhangM. S. Branicky and S. M. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, 21 (2001), 84-99. doi: 10.1109/37.898794.

show all references

References:
[1]

A. BalluchiM. D. BenedettoC. PinelloC. Rossi and A. Sangiovanni-Vincentelli, Cut-off in engine control: A hybrid system approach, Proceedings of the 36th IEEE Conference on Decision and Control, 5 (1997), 4720-4725. doi: 10.1109/CDC.1997.649753.

[2]

B. E. Bishop and M. W. Spong, Control of redundant manipulators using logic-based switching, Proceedings of the 36th IEEE Conference on Decision and Control, 2 (1998), 16-18. doi: 10.1109/CDC.1998.758498.

[3]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control, 43 (1998), 475-482. doi: 10.1109/9.664150.

[4]

J. CaiC. WenH. Su and Z. Liu, Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 58 (2013), 2388-2394. doi: 10.1109/TAC.2013.2251795.

[5]

Y. Chen and W. X. Zheng, Stochastic state estimation for neural networks with distributed delays and Markovian jump, Neural Networks, 25 (2012), 14-20. doi: 10.1016/j.neunet.2011.08.002.

[6]

D. DuB. JiangP. Shi and S. Zhou, H filtering of discrete-time switched systems with state delays via switched Lyapunov function approach, IEEE Transactions on Automatic Control, 52 (2007), 1520-1524. doi: 10.1109/TAC.2007.902777.

[7]

A. Elsayed and M. Grimble, A new approach to design for optimal digital linear filters, IMA J. Math. Control Inf, 6 (1989), 233-251. doi: 10.1093/imamci/6.2.233.

[8]

J. P. HespanhaD. Liberzon and A. S. Morse, Stability of switched systems with average dwell time, Proceedings of 38th Conference on Decision and Control, (1999), 2655-2660. doi: 10.1109/CDC.1999.831330.

[9]

K. Hu and J. Yuan, Improved robust H filtering for uncertain discrete-time switched systems, IET Control Theory Applications, 3 (2009), 315-324. doi: 10.1049/iet-cta:20070253.

[10]

D. Koenig and B. Marx, H filtering and state feedback control for discrete-time switched descriptor systems, IET Control Theory Applications, 3 (2009), 661-670. doi: 10.1049/iet-cta.2008.0132.

[11]

D. LeithR. ShortenW. Leithead and O. Mason, Issue in the design of switched linear control systems: A benchmark study, International Journal of Adaptive Control, 17 (2003), 103-118. doi: 10.1002/acs.741.

[12]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009.

[13]

R. LuB. Lou and A.-K. Xue, Mode-dependent quantised $H_∞$ filtering for Markovian jump singular system, International Journal of Systems Science, 46 (2015), 1817-1824. doi: 10.1080/00207721.2013.837539.

[14]

A. S. Morse, Supervisory control of families of linear set-point controllers, part 1: Exact matching, IEEE Transactions on Automatic Control, 41 (1996), 1413-1431. doi: 10.1109/9.539424.

[15]

K. S. Narendra and J. A. Balakrishnan, Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control, 39 (1994), 2469-2471. doi: 10.1109/9.362846.

[16]

P. ShiM. Mahmoud and S. Nguang, Robust filtering for jumping systems with modedependent delays, Signal Process, 86 (2006), 140-152. doi: 10.1016/j.sigpro.2005.05.005.

[17]

Y. TangH. GaoW. Zou and J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings, IEEE Transactions On Cybernetics, 43 (2013), 358-370. doi: 10.1109/TSMCB.2012.2207718.

[18]

W. XiangJ. Xiao and N. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773. doi: 10.1016/j.nahs.2011.08.001.

[19]

W. Xiang and J. Xiao, H filtering for switched nonlinear systems under asynchronous switching, International Journal of System Science, 42 (2011), 751-765. doi: 10.1080/00207721.2010.488763.

[20]

W. XiangJ. Xiao and M. N. Iqbal, Fault detection for switched nonlinear systems under asynchronous switching, International Journal of Control, 84 (2011), 1362-1376. doi: 10.1080/00207179.2011.598191.

[21]

W. Xiang and J. Xiao, Stabilization of switched continuous-time system with all modes unstable via dwell time switching, Automatica, 50 (2014), 940-945. doi: 10.1016/j.automatica.2013.12.028.

[22]

Z. XiangC. Liang and M. S. Mahmoud, Robust L2L filtering for switched time-delay systems with missing measurements, Circuits, Systems, and Signal Processing, 31 (2012), 1677-1697. doi: 10.1007/s00034-012-9396-z.

[23]

Z. XiangC. Qiao and S. Mahmoud, Robust H filtering for switched stochastic systems under asynchronous switching, Journal of the Franklin Institute, 349 (2012), 1213-1230. doi: 10.1016/j.jfranklin.2012.01.008.

[24]

Z. XiangC. Liang and Q. Chen, Robust L2L filtering for switched systems under asynchronous switching, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3303-3318. doi: 10.1016/j.cnsns.2010.10.029.

[25]

D. XieL. Wang and F. Hao, Robust stability analysis and control synthesis for discrete-time uncertain switched systems, Proceedings of Conference on Decision and Control, (2003), 4812-4817.

[26]

S. XuJ. Lam and Y. Zou, H filtering for singular systems, IEEE Transactions on Automatic Control, 48 (2003), 2217-2222. doi: 10.1109/TAC.2003.820149.

[27]

G. S. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, Proceedings of the American Control Conference, (2000), 200-204. doi: 10.1109/ACC.2000.878825.

[28]

B. Zhang and S. Xu, Robust $H_∞$ filtering for uncertain discrete piecewise time-delay systems, International Journal of Control, 80 (2007), 636-645. doi: 10.1080/00207170601131982.

[29]

W. ZhangM. S. Branicky and S. M. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, 21 (2001), 84-99. doi: 10.1109/37.898794.

Figure 1.  Illustration of state projection approach
Figure 2.  Illustration of projection of filter state
Figure 3.  State response of $x_1 (-)$ and $x_2 (\cdots)$
Figure 4.  State response of $\hat x_1 (-)$ and $\hat x_2 (\cdots)$
Figure 5.  Response of $z (-)$ and $\hat z (\cdots)$
Figure 6.  Response of $\tilde z = z-\hat z$
[1]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[2]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[3]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[4]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[5]

Peter Benner, Ryan Lowe, Matthias Voigt. $\mathcal{L}_{∞}$-norm computation for large-scale descriptor systems using structured iterative eigensolvers. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 119-133. doi: 10.3934/naco.2018007

[6]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[7]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[8]

Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012

[9]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[10]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[11]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[12]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[13]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of $ {\rm{PSL}}(2, \mathbb{R})$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[14]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[15]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[16]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018295

[17]

Chengxiang Wang, Li Zeng, Wei Yu, Liwei Xu. Existence and convergence analysis of $\ell_{0}$ and $\ell_{2}$ regularizations for limited-angle CT reconstruction. Inverse Problems & Imaging, 2018, 12 (3) : 545-572. doi: 10.3934/ipi.2018024

[18]

Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

[19]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[20]

Qianying Xiao, Zuohuan Zheng. $C^1$ weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]