2017, 13(4): 1883-1899. doi: 10.3934/jimo.2017023

A new analytical model for optimized cognitive radio networks based on stochastic geometry

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

The reviewing process of the paper was handled by Wuyi Yue and Yutaka Takahashi as Guest Editors

Received  September 2015 Revised  June 2016 Published  April 2017

In this paper, we consider an underlay type cognitive radio network with multiple secondary users who contend to access multiple heterogeneous licensed channels. With the help of stochastic geometry we develop a new analytical model to analyze a random channel access protocol where each secondary user determines whether to access a licensed channel based on a given access probability. In our analysis we introduce the so-called interference-free region to derive the coverage probability for an arbitrary secondary user. With the help of the interference-free region we approximate the interferences at an arbitrary secondary user from primary users as well as from secondary users in a simple way. Based on our analytical model we obtain the optimal access probabilities that maximize the throughput. Numerical examples are provided to validate our analysis.

Citation: Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023
References:
[1]

A. Babaei and B. Jabbari, Throughput Optimization in Cognitive Random Wireless Ad hoc Networks, Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE,(2010).

[2]

F. Baccelli, B. Blaszczyszyn, M. Karray, Up and downlink admission/congestion control and maximal load in large homogeneous CDMA networks, MONET, 9 (2004), 605-617. doi: 10.1023/B:MONE.0000042499.64488.ba.

[3]

F. Baccelli, B. Blaszczyszyn and F. Tournois, Downlink admission/congestion control and maximal load in CDMA networks, in Proc. IEEE INFOCOM, (2003).

[4]

A. Busson, B. Jabbari, A. Babaei, V. Véque, Interference and throughput in spectrum sensing cognitive radio networks using point processes, Communications and Networks, Journal of, 16 (2014), 67-80. doi: 10.1109/JCN.2014.000010.

[5]

C. C. Chan, S. V. Hanly, Calculating the outage probability in a CDMA network with spatial Poisson traffic, IEEE Trans. Veh. Technol., 50 (2001), 183-204. doi: 10.1109/25.917918.

[6]

V. Chandrasekhar, J. G. Andrews, Uplink capacity and interference avoidance for two-tier cellular networks, IEEE Trans. Wireless Commun., (2009).

[7]

O. Dousse, M. Franceschetti, P. Thiran, On the throughput scaling of wireless relay networks, IEEE Trans. Inform. Theory, 52 (2006), 2756-2761. doi: 10.1109/TIT.2006.874537.

[8]

Federal Communications Commission, Spectrum policy task force, Rep. ET Docket, 2 (2002).

[9]

Federal Communications Commission, Notice of proposed rule making and order, Rep. ET Docket, 2 (2003).

[10]

A. Ghasemi, E. Sousa, Interference aggregation in spectrumsensing cognitive wireless networks, IEEE J. Select. Topics Signal Processing, 2 (2008), 41-56.

[11]

A. Goldsmith, S. A. Jafar, I. Maric, S. Srinivasa, Breaking spectrum gridlock with cognitive radios: An information theoretic perspective, Proc. IEEE, 97 (2009), 894-914. doi: 10.1109/JPROC.2009.2015717.

[12]

M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, M. Franceschetti, Stochastic Geometry and Random Graphs for the Analysis and Design of Wireless Networks, IEEE J. Select. Areas Commun., 27 (2009). doi: 10.1109/JSAC.2009.090902.

[13]

J. Lee, J. G. Andrews, D. Hong, Spectrum-sharing transmission capacity, IEEE Trans. Wireless Commun., 10 (2011), 3053-3063. doi: 10.1109/TWC.2011.070511.101941.

[14]

C. Lee, M. Haenggi, Interference and outage in poisson cognitive networks, IEEE Trans. Wireless Commun., 11 (2012), 1392-1401. doi: 10.1109/TWC.2012.021512.110131.

[15]

D. Moltchanov, Distance distributions in random networks, Ad Hoc Networks, 10 (2012), 1146-1166.

[16]

T. V. Nguyen, F. Baccelli, A probabilistic model of carrier sensing based cognitive radio, New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, (2010), 1-12. doi: 10.1109/DYSPAN.2010.5457860.

[17]

T. V. Nguyen, F. Baccelli, A stochastic geometry model for cognitive radio networks, The Computer Journal, 55 (2012), 534-552. doi: 10.1093/comjnl/bxr049.

[18]

P. Pinto, A. Giorgetti, M. Chiani, M. Win, A stochastic geometry approach to coexistence in heterogeneous wireless networks, IEEE J. Select. Areas Commun., 2009 (2009).

[19]

W. Ren, Q. Zhao, A. Swami, Power control in cognitive radio networks: How to cross a multi-lane highway, IEEE J. Select. Areas Commun., 27 (2009).

[20]

X. Song, C. Yin, D. Liu, R. Zhang, Spatial Opportunity in Cognitive Radio Networks with Threshold-Based Opportunistic Spectrum Access, Communications (ICC), 2013 IEEE International Conference on, (2013), 2695-2700. doi: 10.1109/ICC.2013.6654944.

[21] D. Stoyan, W. Kendall, J. Mecke, Stochastic Geometry and Its Applications, 2 edition, John Wiley and Sons, 1996.
[22]

R. Vaze, Transmission capacity of spectrum sharing ad hoc networks with multiple antennas, IEEE Trans. Wireless Commun., 10 (2011), 2334-2340. doi: 10.1109/WIOPT.2011.5930039.

[23]

X. Yang, A. Petropulu, Co-channel interference modelling and analysis in a Poisson field of interferers in wireless communications, IEEE Trans. Signal Processing, 51 (2003), 64-76. doi: 10.1109/TSP.2002.806591.

[24]

C. Yin, L. Gao, S. Cui, Scaling laws for overlaid wireless networks: A cognitive radio network vs. a primary network, IEEE/ACM Transactions on, 18 (2010), 1317-1329. doi: 10.1109/GLOCOM.2008.ECP.244.

[25]

C. Yin, C. Chen, T. Liu and S. Cui, Generalized results of transmission capacities for overlaid wireless networks, in Proc. IEEE Int. Symp. Inf. Theory, Seoul, Korea, (2009), 1774-1778.

[26]

J. Zhang, J. G. Andrews, Distributed antenna systems with randomness, IEEE Trans. Wireless Commun., 7 (2008), 3636-3646.

[27]

Q. Zhao, B. Sadler, A survey of dynamic spectrum access, IEEE Signal Process. Mag., 24 (2007), 79-89.

show all references

References:
[1]

A. Babaei and B. Jabbari, Throughput Optimization in Cognitive Random Wireless Ad hoc Networks, Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE,(2010).

[2]

F. Baccelli, B. Blaszczyszyn, M. Karray, Up and downlink admission/congestion control and maximal load in large homogeneous CDMA networks, MONET, 9 (2004), 605-617. doi: 10.1023/B:MONE.0000042499.64488.ba.

[3]

F. Baccelli, B. Blaszczyszyn and F. Tournois, Downlink admission/congestion control and maximal load in CDMA networks, in Proc. IEEE INFOCOM, (2003).

[4]

A. Busson, B. Jabbari, A. Babaei, V. Véque, Interference and throughput in spectrum sensing cognitive radio networks using point processes, Communications and Networks, Journal of, 16 (2014), 67-80. doi: 10.1109/JCN.2014.000010.

[5]

C. C. Chan, S. V. Hanly, Calculating the outage probability in a CDMA network with spatial Poisson traffic, IEEE Trans. Veh. Technol., 50 (2001), 183-204. doi: 10.1109/25.917918.

[6]

V. Chandrasekhar, J. G. Andrews, Uplink capacity and interference avoidance for two-tier cellular networks, IEEE Trans. Wireless Commun., (2009).

[7]

O. Dousse, M. Franceschetti, P. Thiran, On the throughput scaling of wireless relay networks, IEEE Trans. Inform. Theory, 52 (2006), 2756-2761. doi: 10.1109/TIT.2006.874537.

[8]

Federal Communications Commission, Spectrum policy task force, Rep. ET Docket, 2 (2002).

[9]

Federal Communications Commission, Notice of proposed rule making and order, Rep. ET Docket, 2 (2003).

[10]

A. Ghasemi, E. Sousa, Interference aggregation in spectrumsensing cognitive wireless networks, IEEE J. Select. Topics Signal Processing, 2 (2008), 41-56.

[11]

A. Goldsmith, S. A. Jafar, I. Maric, S. Srinivasa, Breaking spectrum gridlock with cognitive radios: An information theoretic perspective, Proc. IEEE, 97 (2009), 894-914. doi: 10.1109/JPROC.2009.2015717.

[12]

M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, M. Franceschetti, Stochastic Geometry and Random Graphs for the Analysis and Design of Wireless Networks, IEEE J. Select. Areas Commun., 27 (2009). doi: 10.1109/JSAC.2009.090902.

[13]

J. Lee, J. G. Andrews, D. Hong, Spectrum-sharing transmission capacity, IEEE Trans. Wireless Commun., 10 (2011), 3053-3063. doi: 10.1109/TWC.2011.070511.101941.

[14]

C. Lee, M. Haenggi, Interference and outage in poisson cognitive networks, IEEE Trans. Wireless Commun., 11 (2012), 1392-1401. doi: 10.1109/TWC.2012.021512.110131.

[15]

D. Moltchanov, Distance distributions in random networks, Ad Hoc Networks, 10 (2012), 1146-1166.

[16]

T. V. Nguyen, F. Baccelli, A probabilistic model of carrier sensing based cognitive radio, New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, (2010), 1-12. doi: 10.1109/DYSPAN.2010.5457860.

[17]

T. V. Nguyen, F. Baccelli, A stochastic geometry model for cognitive radio networks, The Computer Journal, 55 (2012), 534-552. doi: 10.1093/comjnl/bxr049.

[18]

P. Pinto, A. Giorgetti, M. Chiani, M. Win, A stochastic geometry approach to coexistence in heterogeneous wireless networks, IEEE J. Select. Areas Commun., 2009 (2009).

[19]

W. Ren, Q. Zhao, A. Swami, Power control in cognitive radio networks: How to cross a multi-lane highway, IEEE J. Select. Areas Commun., 27 (2009).

[20]

X. Song, C. Yin, D. Liu, R. Zhang, Spatial Opportunity in Cognitive Radio Networks with Threshold-Based Opportunistic Spectrum Access, Communications (ICC), 2013 IEEE International Conference on, (2013), 2695-2700. doi: 10.1109/ICC.2013.6654944.

[21] D. Stoyan, W. Kendall, J. Mecke, Stochastic Geometry and Its Applications, 2 edition, John Wiley and Sons, 1996.
[22]

R. Vaze, Transmission capacity of spectrum sharing ad hoc networks with multiple antennas, IEEE Trans. Wireless Commun., 10 (2011), 2334-2340. doi: 10.1109/WIOPT.2011.5930039.

[23]

X. Yang, A. Petropulu, Co-channel interference modelling and analysis in a Poisson field of interferers in wireless communications, IEEE Trans. Signal Processing, 51 (2003), 64-76. doi: 10.1109/TSP.2002.806591.

[24]

C. Yin, L. Gao, S. Cui, Scaling laws for overlaid wireless networks: A cognitive radio network vs. a primary network, IEEE/ACM Transactions on, 18 (2010), 1317-1329. doi: 10.1109/GLOCOM.2008.ECP.244.

[25]

C. Yin, C. Chen, T. Liu and S. Cui, Generalized results of transmission capacities for overlaid wireless networks, in Proc. IEEE Int. Symp. Inf. Theory, Seoul, Korea, (2009), 1774-1778.

[26]

J. Zhang, J. G. Andrews, Distributed antenna systems with randomness, IEEE Trans. Wireless Commun., 7 (2008), 3636-3646.

[27]

Q. Zhao, B. Sadler, A survey of dynamic spectrum access, IEEE Signal Process. Mag., 24 (2007), 79-89.

Figure 1.  Interference-free region
Figure 2.  The probability that the sensed channel is idle
Figure 3.  The coverage probability
Figure 4.  Throughput
Table 1.  The optimal point obtained from analysis under parameter sets (a) to (d)
Parameter set Optimal point $\mathbf{b}_A^*$
(a) $\lambda_{s}=0.001, T_1=0.0001$ (0.5722, 0.4278)
(b) $\lambda_{s}=0.001, T_1=0.001$ (0.5198, 0.4802)
(c) $\lambda_{s}=0.005, T_1=0.0001$ (0.3714, 0.4143)
(d) $\lambda_{s}=0.005, T_1=0.001$ (0.3688, 0.3925)
Parameter set Optimal point $\mathbf{b}_A^*$
(a) $\lambda_{s}=0.001, T_1=0.0001$ (0.5722, 0.4278)
(b) $\lambda_{s}=0.001, T_1=0.001$ (0.5198, 0.4802)
(c) $\lambda_{s}=0.005, T_1=0.0001$ (0.3714, 0.4143)
(d) $\lambda_{s}=0.005, T_1=0.001$ (0.3688, 0.3925)
Table 2.  throughput over $b_1$ and $b_2$($\lambda_s=0.001, T_1=0.0001$)
0.41 0.42 0.43 0.44 0.45
0.55 0.611956 0.616004 0.620971 0.626117 0.630063
0.56 0.616728 0.621303 0.626249 0.630435 -
0.57 0.621165 0.625826 0.630827 - -
0.58 0.626057 0.630756 - - -
0.59 0.630405 - - - -
0.41 0.42 0.43 0.44 0.45
0.55 0.611956 0.616004 0.620971 0.626117 0.630063
0.56 0.616728 0.621303 0.626249 0.630435 -
0.57 0.621165 0.625826 0.630827 - -
0.58 0.626057 0.630756 - - -
0.59 0.630405 - - - -
Table 3.  throughput over $b_1$ and $b_2$($\lambda_s=0.001, T_1=0.001$)
0.46 0.47 0.48 0.49 0.50
0.50 0.656962 0.661976 0.667183 0.671202 0.675827
0.51 0.662102 0.666946 0.672465 0.676458 -
0.52 0.667741 0.672843 0.677074 - -
0.53 0.672488 0.676938 - - -
0.54 0.676835 - - - -
0.46 0.47 0.48 0.49 0.50
0.50 0.656962 0.661976 0.667183 0.671202 0.675827
0.51 0.662102 0.666946 0.672465 0.676458 -
0.52 0.667741 0.672843 0.677074 - -
0.53 0.672488 0.676938 - - -
0.54 0.676835 - - - -
Table 4.  throughput over $b_1$ and $b_2$($\lambda_s=0.005, T_1=0.0001$)
0.39 0.40 0.41 0.42 0.43
0.35 0.236905 0.237417 0.238089 0.237907 0.237750
0.36 0.237910 0.237729 0.237724 0.238186 0.238567
0.37 0.237818 0.237955 0.237926 0.238400 0.238395
0.38 0.237836 0.238351 0.238569 0.238292 0.238104
0.39 0.238228 0.238257 0.238475 0.238197 0.238343
0.39 0.40 0.41 0.42 0.43
0.35 0.236905 0.237417 0.238089 0.237907 0.237750
0.36 0.237910 0.237729 0.237724 0.238186 0.238567
0.37 0.237818 0.237955 0.237926 0.238400 0.238395
0.38 0.237836 0.238351 0.238569 0.238292 0.238104
0.39 0.238228 0.238257 0.238475 0.238197 0.238343
Table 5.  throughput over $b_1$ and $b_2$($\lambda_s=0.005, T_1=0.001$)
0.37 0.38 0.39 0.40 0.41
0.35 0.243218 0.244021 0.243855 0.244004 0.243705
0.36 0.243233 0.243758 0.243913 0.243568 0.243585
0.37 0.243763 0.244133 0.243675 0.243949 0.243908
0.38 0.243935 0.243805 0.243465 0.243912 0.243500
0.39 0.243420 0.243700 0.243563 0.243473 0.243394
0.37 0.38 0.39 0.40 0.41
0.35 0.243218 0.244021 0.243855 0.244004 0.243705
0.36 0.243233 0.243758 0.243913 0.243568 0.243585
0.37 0.243763 0.244133 0.243675 0.243949 0.243908
0.38 0.243935 0.243805 0.243465 0.243912 0.243500
0.39 0.243420 0.243700 0.243563 0.243473 0.243394
[1]

Haruki Katayama, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding. Journal of Industrial & Management Optimization, 2014, 10 (1) : 21-40. doi: 10.3934/jimo.2014.10.21

[2]

Shengzhu Jin, Bong Dae Choi, Doo Seop Eom. Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1483-1494. doi: 10.3934/jimo.2017003

[3]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[4]

Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807

[5]

Yuan Zhao, Wuyi Yue. Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1449-1466. doi: 10.3934/jimo.2017001

[6]

Shunfu Jin, Wuyi Yue, Zsolt Saffer. Analysis and optimization of a gated polling based spectrum allocation mechanism in cognitive radio networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 687-702. doi: 10.3934/jimo.2016.12.687

[7]

Koen De Turck, Sabine Wittevrongel. Receiver buffer behavior for the selective repeat protocol over a wireless channel: An exact and large-deviations analysis. Journal of Industrial & Management Optimization, 2010, 6 (3) : 603-619. doi: 10.3934/jimo.2010.6.603

[8]

Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11

[9]

Tomoya Tainaka, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. A Markovian approach to per-flow throughput unfairness in IEEE 802.11 multihop wireless networks. Journal of Industrial & Management Optimization, 2009, 5 (3) : 493-510. doi: 10.3934/jimo.2009.5.493

[10]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[11]

Fumio Ishizaki. Analysis of the statistical time-access fairness index of one-bit feedback fair scheduler. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 675-689. doi: 10.3934/naco.2011.1.675

[12]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Asymptotic analysis for the 3D primitive equations in a channel. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 401-422. doi: 10.3934/dcdss.2013.6.401

[13]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks & Heterogeneous Media, 2010, 5 (4) : 783-812. doi: 10.3934/nhm.2010.5.783

[14]

Kyosuke Hashimoto, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of backup-task scheduling with deadline time in cloud computing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 867-886. doi: 10.3934/jimo.2015.11.867

[15]

Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025

[16]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[17]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. Performance analysis of buffers with train arrivals and correlated output interruptions. Journal of Industrial & Management Optimization, 2015, 11 (3) : 829-848. doi: 10.3934/jimo.2015.11.829

[18]

. Analysis and control on networks: Trends and perspectives. Networks & Heterogeneous Media, 2017, 12 (2) : i-ii. doi: 10.3934/nhm.201702i

[19]

. Analysis and control on networks: Trends and perspectives. Networks & Heterogeneous Media, 2017, 12 (3) : i-ii. doi: 10.3934/nhm.201703i

[20]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (2)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]