• Previous Article
    An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
  • JIMO Home
  • This Issue
  • Next Article
    Fuzzy quadratic surface support vector machine based on fisher discriminant analysis
January  2016, 12(1): 337-355. doi: 10.3934/jimo.2016.12.337

A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain

1. 

Department of Industrial Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran, Iran, Iran

Received  September 2014 Revised  March 2015 Published  April 2015

Supply chain members coordinate with each other in order to obtain more profit. The major mechanisms for coordination among supply chain echelons are pricing, inventory management, and ordering decisions. Regarding to these mechanisms, supply chain participants have conflicts of interest. This paper concerns coordination of enterprise decisions including pricing, advertising, ordering, and inventory decisions in a multi-echelon supply chain consisting of multiple suppliers, one manufacturer, and multiple retailers. In the current study, a novel inventory model is presented for both the manufacturer, and the retailers who are able to determine the number of orders for each product. Moreover, each supply chain member has equal power and make their decisions simultaneously. The proposed model considers the relationships among three echelon supply chain members based on a non-cooperative Nash game with pricing and inventory decisions. An iterative solution algorithm is proposed to find Nash equilibrium point of the game. Several numerical examples are presented to study the application of the model as well as the effectiveness of the algorithm. Finally, a comprehensive sensitivity analysis is performed and some important managerial insights are highlighted.
Citation: Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337
References:
[1]

P. L. Abad, Optimal price and lot size when the supplier offers a temporary price reduction over an interval,, Computers and Operations Research, 30 (2003), 63. doi: 10.1016/S0305-0548(01)00081-8. Google Scholar

[2]

G. Aust and U. Buscher, Game theoretic analysis of pricing and vertical cooperative advertising of a retailer-duopoly with a common manufacturer reduction over an interval,, Central European Journal of Operational Research, (2014). doi: doi 10.1007/s10100-014-0338-7. Google Scholar

[3]

G. Aust and U. Buscher, Cooperative advertising models in supply chain management: A review,, European Journal of Operation Research, 234 (2014), 1. doi: 10.1016/j.ejor.2013.08.010. Google Scholar

[4]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,, Academic Press, (1982). Google Scholar

[5]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms,, Third edition. Wiley-Interscience [John Wiley & Sons], (2006). doi: 10.1002/0471787779. Google Scholar

[6]

G. G. Cai, Z. G. Zhang and M. Zhang, Game theoretical perspectives on dual channel supply chain competition with price discounts and pricing schemes,, International Journal of Production Economics, 117 (2009), 80. doi: 10.1016/j.ijpe.2008.08.053. Google Scholar

[7]

L. E. Cardenas-Barron, Optimizing inventory decisions in a multi-stage multi-customer supply chain: A note,, Transportation Research Part E, 43 (2007), 647. doi: 10.1016/j.tre.2005.09.011. Google Scholar

[8]

W. Chung, S. Talluri and R. Narasimhan, Price markdown scheme in a multiechelon supply chain in a high-tech industry,, European Journal of Operational Research, 215 (2011), 581. doi: 10.1016/j.ejor.2011.07.002. Google Scholar

[9]

A. Dumrongsiri, M. Fan, A. Jain and K. Moinzadeh, A supply chain model with direct and retail channels,, European Journal of Operational Research, 187 (2008), 691. doi: 10.1016/j.ejor.2006.05.044. Google Scholar

[10]

L. Dong, P. Kouvelis and Z. Tian, Dynamic pricing and inventory control of substitute products,, Manufacturing & Service Operations Management, 11 (2008), 317. doi: 10.1287/msom.1080.0221. Google Scholar

[11]

M. Esmaeili, M.-B. Aryanezhad and P. Zeephongeskul, A game theory approach in seller-buyer supply chain,, European Journal of Operational Research, 195 (2009), 442. doi: 10.1016/j.ejor.2008.02.026. Google Scholar

[12]

M. Esmaeili and P. Zeephongeskul, Seller-buyer models of supply chain management with an asymmetric information structure,, International Journal of Production Economics, 123 (2010), 146. doi: 10.1016/j.ijpe.2009.07.016. Google Scholar

[13]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems,, 4OR, 5 (2007), 173. doi: 10.1007/s10288-007-0054-4. Google Scholar

[14]

B. Fugate, F. Shahin and J. Mentzer, Supply chain management coordination mechanism,, Journal of Business Logistics, 27 (2006), 129. doi: 10.1002/j.2158-1592.2006.tb00220.x. Google Scholar

[15]

M. Ghoreishi, A. Mirzazadeh, G.-W. Weber and I. Nakhai-Kamalabadi, pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer,, Journal of Industrial and Management optimization, 11 (2015), 933. doi: 10.3934/jimo.2015.11.933. Google Scholar

[16]

Y. Huang, G. Q. Huang and S. T. Newman, Coordinating pricing and inventory decisions in a multi-level supply chain: A game-theoretic approach,, Transportation Research Part E, 47 (2011), 115. doi: 10.1016/j.tre.2010.09.011. Google Scholar

[17]

L. Jiang, Y. Wang, X. Yan and W. Dai, Coordinating a three-stage supply chain with competing manufacturers,, Central European Journal of Operations Research, 22 (2014), 53. doi: 10.1007/s10100-012-0267-2. Google Scholar

[18]

S. Karray, Periodicity of pricing and marketing efforts in a distribution channel,, European Journal of Operational Research, 228 (2013), 635. doi: 10.1016/j.ejor.2013.02.012. Google Scholar

[19]

M. Kunter, Coordination via cost and revenue sharing in manufacturer-retailer channels,, European Journal of Operational Research, 216 (2012), 477. doi: 10.1016/j.ejor.2011.07.001. Google Scholar

[20]

H. Li and T. You, Capacity commitment and pricing for substitutable products under competition,, Journal of Systems Science and Systems Engineering, 21 (2012), 443. doi: 10.1007/s11518-012-5204-3. Google Scholar

[21]

L. Lu, A one-vendor multi-buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312. doi: 10.1016/0377-2217(93)E0253-T. Google Scholar

[22]

G. E. Martin, Note an EOQ model with a temporary sale price,, International Journal of Production Economics, 37 (1994), 241. doi: 10.1016/0925-5273(94)90174-0. Google Scholar

[23]

M. Khouja, Optimizing inventory decisions in a multi-stage multi-customer supply chain,, Transportation Research Part E, 39 (2003), 193. doi: 10.1016/S1366-5545(02)00036-4. Google Scholar

[24]

A. Naimi Sadigh, B. Karimi and R. Zanjirani Farahani, A game theoretic approach for two echelon supply chains with continuous depletion,, International Journal of Management Science and Engineering Management, 6 (2011), 408. Google Scholar

[25]

A. Naimi Sadigh, B. Karimi and M. Mozafari, Manufacturer-retailer supply chain coordination: A bi-level programming approach,, Advances in Engineering Software, 45 (2012), 144. Google Scholar

[26]

Y. Qin, H. Tang and C. Guo, Channel coordination and volume discounts with price-sensitive demand,, International Journal of Production Economics, 105 (2007), 43. doi: 10.1016/j.ijpe.2006.02.005. Google Scholar

[27]

K. Ramdas and R. E. Spekman, Chain or shackles: Understanding what drives supply-chain performance,, Interfaces, 30 (2000), 3. doi: 10.1287/inte.30.4.3.11644. Google Scholar

[28]

S. S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain,, Decision Support Systems, 50 (2011), 539. doi: 10.1016/j.dss.2010.11.012. Google Scholar

[29]

S. S. Sana and S. K. Goyal, (Q, r, L) model for stochastic demand with lead-time dependent partial backlogging,, Annals of Operations Research, (2014). doi: 10.1007/s10479-014-1731-2. Google Scholar

[30]

S. S. Sana, J. A. Chedid and K. S. Navarro, A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items,, Applied Mathematics and Computations, 229 (2014), 139. doi: 10.1016/j.amc.2013.12.006. Google Scholar

[31]

M. M. SeyedEsfahani, M. Biazaran and M. Gharakhani, A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-retailer supply chains,, European Journal of Operational Research, 211 (2011), 263. doi: 10.1016/j.ejor.2010.11.014. Google Scholar

[32]

J. Shi and T. Xiao, Service investment and consumer returns policy in a vendor-managed inventory supply chain,, Journal of Industrial and Management Optimization, 11 (2015), 439. doi: 10.3934/jimo.2015.11.439. Google Scholar

[33]

N. Shi, S. Zhou, F. Wang, S. Xu and S. Xiong, Horizontal cooperation and information sharing between suppliers in the manufacturer-supplier triad,, International Journal of Production Research, 52 (2014), 4526. doi: 10.1080/00207543.2013.869630. Google Scholar

[34]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination,, Computers & Operations Research, 39 (2012), 1872. doi: 10.1016/j.cor.2011.07.009. Google Scholar

[35]

S. Viswanathan and Q. Wang, Discount pricing decisions in distribution channels with price-sensitive demand,, European Journal of Operational Research, 149 (2003), 571. doi: 10.1016/S0377-2217(02)00469-1. Google Scholar

[36]

Z. K. Weng, Channel coordination and quantity discounts,, Management Science, 41 (1995), 1509. doi: 10.1287/mnsc.41.9.1509. Google Scholar

[37]

J. Yang, J. Xie, X. Deng and H. Xiong, Cooperative advertising in a distribution channel with fairness concerns,, European Journal of Operational Research, 227 (2013), 401. doi: 10.1016/j.ejor.2012.12.011. Google Scholar

[38]

Y. Yu, L. Liang and G. Q. Huang, Leader-follower game in vendor-managed inventory system with limited production capacity considering wholesale and retail prices,, International Journal of Logistics: Research and Application, 9 (2006), 335. Google Scholar

[39]

Y. Yu, F. Chu and H. Chen, A Stackelberg game and its improvement in a VMI system with a manufacturing vendor,, European Journal of Operational Research, 192 (2009), 929. doi: 10.1016/j.ejor.2007.10.016. Google Scholar

[40]

D. Yue and F. You, Game-theoretic modeling and optimization of multi-echelon supply chain design and operation under Stackelberg game and market equilibrium,, Computers & Chemical Engineering, 71 (2014), 347. doi: 10.1016/j.compchemeng.2014.08.010. Google Scholar

[41]

J. Yue, J. Austin, Z. Huang and B. Chen, Pricing and advertisement in a manufacturer-retailer supply chain,, European Journal of Operational Research, 231 (2013), 492. doi: 10.1016/j.ejor.2013.06.007. Google Scholar

[42]

J. Zhang, J. Xie and B. Chen, Cooperative advertising with bilateral participation,, Decision Sciences, 44 (2013), 193. doi: 10.1111/j.1540-5915.2012.00382.x. Google Scholar

[43]

J. Zhao, J. Wei and Y. Li, Pricing decisions for substitutable products in a two-echelon supply chain with firms' different channel power,, International Journal of Production Economics, 153 (2014), 243. doi: 10.1016/j.ijpe.2014.03.005. Google Scholar

[44]

K. Zhu and U. Thonemann, Coordination of pricing and inventory control across products,, Naval Research Logistics, 56 (2009), 175. doi: 10.1002/nav.20340. Google Scholar

show all references

References:
[1]

P. L. Abad, Optimal price and lot size when the supplier offers a temporary price reduction over an interval,, Computers and Operations Research, 30 (2003), 63. doi: 10.1016/S0305-0548(01)00081-8. Google Scholar

[2]

G. Aust and U. Buscher, Game theoretic analysis of pricing and vertical cooperative advertising of a retailer-duopoly with a common manufacturer reduction over an interval,, Central European Journal of Operational Research, (2014). doi: doi 10.1007/s10100-014-0338-7. Google Scholar

[3]

G. Aust and U. Buscher, Cooperative advertising models in supply chain management: A review,, European Journal of Operation Research, 234 (2014), 1. doi: 10.1016/j.ejor.2013.08.010. Google Scholar

[4]

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,, Academic Press, (1982). Google Scholar

[5]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms,, Third edition. Wiley-Interscience [John Wiley & Sons], (2006). doi: 10.1002/0471787779. Google Scholar

[6]

G. G. Cai, Z. G. Zhang and M. Zhang, Game theoretical perspectives on dual channel supply chain competition with price discounts and pricing schemes,, International Journal of Production Economics, 117 (2009), 80. doi: 10.1016/j.ijpe.2008.08.053. Google Scholar

[7]

L. E. Cardenas-Barron, Optimizing inventory decisions in a multi-stage multi-customer supply chain: A note,, Transportation Research Part E, 43 (2007), 647. doi: 10.1016/j.tre.2005.09.011. Google Scholar

[8]

W. Chung, S. Talluri and R. Narasimhan, Price markdown scheme in a multiechelon supply chain in a high-tech industry,, European Journal of Operational Research, 215 (2011), 581. doi: 10.1016/j.ejor.2011.07.002. Google Scholar

[9]

A. Dumrongsiri, M. Fan, A. Jain and K. Moinzadeh, A supply chain model with direct and retail channels,, European Journal of Operational Research, 187 (2008), 691. doi: 10.1016/j.ejor.2006.05.044. Google Scholar

[10]

L. Dong, P. Kouvelis and Z. Tian, Dynamic pricing and inventory control of substitute products,, Manufacturing & Service Operations Management, 11 (2008), 317. doi: 10.1287/msom.1080.0221. Google Scholar

[11]

M. Esmaeili, M.-B. Aryanezhad and P. Zeephongeskul, A game theory approach in seller-buyer supply chain,, European Journal of Operational Research, 195 (2009), 442. doi: 10.1016/j.ejor.2008.02.026. Google Scholar

[12]

M. Esmaeili and P. Zeephongeskul, Seller-buyer models of supply chain management with an asymmetric information structure,, International Journal of Production Economics, 123 (2010), 146. doi: 10.1016/j.ijpe.2009.07.016. Google Scholar

[13]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems,, 4OR, 5 (2007), 173. doi: 10.1007/s10288-007-0054-4. Google Scholar

[14]

B. Fugate, F. Shahin and J. Mentzer, Supply chain management coordination mechanism,, Journal of Business Logistics, 27 (2006), 129. doi: 10.1002/j.2158-1592.2006.tb00220.x. Google Scholar

[15]

M. Ghoreishi, A. Mirzazadeh, G.-W. Weber and I. Nakhai-Kamalabadi, pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer,, Journal of Industrial and Management optimization, 11 (2015), 933. doi: 10.3934/jimo.2015.11.933. Google Scholar

[16]

Y. Huang, G. Q. Huang and S. T. Newman, Coordinating pricing and inventory decisions in a multi-level supply chain: A game-theoretic approach,, Transportation Research Part E, 47 (2011), 115. doi: 10.1016/j.tre.2010.09.011. Google Scholar

[17]

L. Jiang, Y. Wang, X. Yan and W. Dai, Coordinating a three-stage supply chain with competing manufacturers,, Central European Journal of Operations Research, 22 (2014), 53. doi: 10.1007/s10100-012-0267-2. Google Scholar

[18]

S. Karray, Periodicity of pricing and marketing efforts in a distribution channel,, European Journal of Operational Research, 228 (2013), 635. doi: 10.1016/j.ejor.2013.02.012. Google Scholar

[19]

M. Kunter, Coordination via cost and revenue sharing in manufacturer-retailer channels,, European Journal of Operational Research, 216 (2012), 477. doi: 10.1016/j.ejor.2011.07.001. Google Scholar

[20]

H. Li and T. You, Capacity commitment and pricing for substitutable products under competition,, Journal of Systems Science and Systems Engineering, 21 (2012), 443. doi: 10.1007/s11518-012-5204-3. Google Scholar

[21]

L. Lu, A one-vendor multi-buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312. doi: 10.1016/0377-2217(93)E0253-T. Google Scholar

[22]

G. E. Martin, Note an EOQ model with a temporary sale price,, International Journal of Production Economics, 37 (1994), 241. doi: 10.1016/0925-5273(94)90174-0. Google Scholar

[23]

M. Khouja, Optimizing inventory decisions in a multi-stage multi-customer supply chain,, Transportation Research Part E, 39 (2003), 193. doi: 10.1016/S1366-5545(02)00036-4. Google Scholar

[24]

A. Naimi Sadigh, B. Karimi and R. Zanjirani Farahani, A game theoretic approach for two echelon supply chains with continuous depletion,, International Journal of Management Science and Engineering Management, 6 (2011), 408. Google Scholar

[25]

A. Naimi Sadigh, B. Karimi and M. Mozafari, Manufacturer-retailer supply chain coordination: A bi-level programming approach,, Advances in Engineering Software, 45 (2012), 144. Google Scholar

[26]

Y. Qin, H. Tang and C. Guo, Channel coordination and volume discounts with price-sensitive demand,, International Journal of Production Economics, 105 (2007), 43. doi: 10.1016/j.ijpe.2006.02.005. Google Scholar

[27]

K. Ramdas and R. E. Spekman, Chain or shackles: Understanding what drives supply-chain performance,, Interfaces, 30 (2000), 3. doi: 10.1287/inte.30.4.3.11644. Google Scholar

[28]

S. S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain,, Decision Support Systems, 50 (2011), 539. doi: 10.1016/j.dss.2010.11.012. Google Scholar

[29]

S. S. Sana and S. K. Goyal, (Q, r, L) model for stochastic demand with lead-time dependent partial backlogging,, Annals of Operations Research, (2014). doi: 10.1007/s10479-014-1731-2. Google Scholar

[30]

S. S. Sana, J. A. Chedid and K. S. Navarro, A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items,, Applied Mathematics and Computations, 229 (2014), 139. doi: 10.1016/j.amc.2013.12.006. Google Scholar

[31]

M. M. SeyedEsfahani, M. Biazaran and M. Gharakhani, A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer-retailer supply chains,, European Journal of Operational Research, 211 (2011), 263. doi: 10.1016/j.ejor.2010.11.014. Google Scholar

[32]

J. Shi and T. Xiao, Service investment and consumer returns policy in a vendor-managed inventory supply chain,, Journal of Industrial and Management Optimization, 11 (2015), 439. doi: 10.3934/jimo.2015.11.439. Google Scholar

[33]

N. Shi, S. Zhou, F. Wang, S. Xu and S. Xiong, Horizontal cooperation and information sharing between suppliers in the manufacturer-supplier triad,, International Journal of Production Research, 52 (2014), 4526. doi: 10.1080/00207543.2013.869630. Google Scholar

[34]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination,, Computers & Operations Research, 39 (2012), 1872. doi: 10.1016/j.cor.2011.07.009. Google Scholar

[35]

S. Viswanathan and Q. Wang, Discount pricing decisions in distribution channels with price-sensitive demand,, European Journal of Operational Research, 149 (2003), 571. doi: 10.1016/S0377-2217(02)00469-1. Google Scholar

[36]

Z. K. Weng, Channel coordination and quantity discounts,, Management Science, 41 (1995), 1509. doi: 10.1287/mnsc.41.9.1509. Google Scholar

[37]

J. Yang, J. Xie, X. Deng and H. Xiong, Cooperative advertising in a distribution channel with fairness concerns,, European Journal of Operational Research, 227 (2013), 401. doi: 10.1016/j.ejor.2012.12.011. Google Scholar

[38]

Y. Yu, L. Liang and G. Q. Huang, Leader-follower game in vendor-managed inventory system with limited production capacity considering wholesale and retail prices,, International Journal of Logistics: Research and Application, 9 (2006), 335. Google Scholar

[39]

Y. Yu, F. Chu and H. Chen, A Stackelberg game and its improvement in a VMI system with a manufacturing vendor,, European Journal of Operational Research, 192 (2009), 929. doi: 10.1016/j.ejor.2007.10.016. Google Scholar

[40]

D. Yue and F. You, Game-theoretic modeling and optimization of multi-echelon supply chain design and operation under Stackelberg game and market equilibrium,, Computers & Chemical Engineering, 71 (2014), 347. doi: 10.1016/j.compchemeng.2014.08.010. Google Scholar

[41]

J. Yue, J. Austin, Z. Huang and B. Chen, Pricing and advertisement in a manufacturer-retailer supply chain,, European Journal of Operational Research, 231 (2013), 492. doi: 10.1016/j.ejor.2013.06.007. Google Scholar

[42]

J. Zhang, J. Xie and B. Chen, Cooperative advertising with bilateral participation,, Decision Sciences, 44 (2013), 193. doi: 10.1111/j.1540-5915.2012.00382.x. Google Scholar

[43]

J. Zhao, J. Wei and Y. Li, Pricing decisions for substitutable products in a two-echelon supply chain with firms' different channel power,, International Journal of Production Economics, 153 (2014), 243. doi: 10.1016/j.ijpe.2014.03.005. Google Scholar

[44]

K. Zhu and U. Thonemann, Coordination of pricing and inventory control across products,, Naval Research Logistics, 56 (2009), 175. doi: 10.1002/nav.20340. Google Scholar

[1]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[2]

Jingming Pan, Wenqing Shi, Xiaowo Tang. Pricing and ordering strategies of supply chain with selling gift cards. Journal of Industrial & Management Optimization, 2018, 14 (1) : 349-369. doi: 10.3934/jimo.2017050

[3]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[4]

Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009

[5]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[6]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[7]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial & Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[8]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[9]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[10]

Ruopeng Wang, Jinting Wang, Chang Sun. Optimal pricing and inventory management for a loss averse firm when facing strategic customers. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1521-1544. doi: 10.3934/jimo.2018019

[11]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial & Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[12]

Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial & Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263

[13]

Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendor-managed inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439-459. doi: 10.3934/jimo.2015.11.439

[14]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[15]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020

[16]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

[17]

Ata Allah Taleizadeh, Leopoldo Eduardo Cárdenas-Barrón, Roya Sohani. Coordinating the supplier-retailer supply chain under noise effect with bundling and inventory strategies. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1701-1727. doi: 10.3934/jimo.2018118

[18]

Xiaohong Chen, Kui Li, Fuqiang Wang, Xihua Li. Optimal production, pricing and government subsidy policies for a closed loop supply chain with uncertain returns. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2019008

[19]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[20]

Xiaoming Yan, Minghui Zhang, Ke Liu, Yong Wang. Optimal ordering policies and sourcing strategies with supply disruption. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1147-1168. doi: 10.3934/jimo.2014.10.1147

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (5)

[Back to Top]