• Previous Article
    An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity
  • JIMO Home
  • This Issue
  • Next Article
    Some characterizations of the approximate solutions to generalized vector equilibrium problems
2016, 12(3): 1121-1133. doi: 10.3934/jimo.2016.12.1121

Explicit solution for the stationary distribution of a discrete-time finite buffer queue

1. 

Department of Mathematics, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea

2. 

Department of Mathematics Education, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea

Received  October 2013 Revised  February 2015 Published  September 2015

We consider a discrete-time single server queue with finite buffer. The customers arrive according to a discrete-time batch Markovian arrival process with geometrically distributed batch sizes and the service time is one time slot. For this queueing system, we obtain an exact closed-form expression for the stationary queue length distribution. The expression is in a form of mixed matrix-geometric solution.
Citation: Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121
References:
[1]

N. Akar, N. C. Oǧuz and K. Sohraby, Matrix-geometric solutions of M/G/1-type Markov chains: A unifying generalized state-space approach,, IEEE Journal on Selected Areas in Communications, 16 (1998), 626. doi: 10.1109/49.700901.

[2]

C. Blondia, A discrete-time batch Markovian arrival process as B-ISDN traffic model,, Belgian J. Oper. Res. Statist. Comput. Sci., 32 (1993), 3.

[3]

C. Blondia and O. Casals, Performance analysis of statistical multiplexing of VBR sources,, Proc. IEEE INFOCOM, (1992), 828. doi: 10.1109/INFCOM.1992.263492.

[4]

C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5. doi: 10.1016/0166-5316(92)90064-N.

[5]

M. L. Chaudhry and U. C. Gupta, Queue length distributions at various epochs in discrete-time D-MAP/G/1/N queue and their numerical evaluations,, Information and Management Science, 14 (2003), 67.

[6]

C. Herrmann, The complete analysis of the discrete time finite DBMAP/G/1/N queue,, Performance Evaluation, 43 (2001), 95. doi: 10.1016/S0166-5316(00)00037-7.

[7]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on Statistics and Applied Probability, (1999). doi: 10.1137/1.9780898719734.

[8]

D. Moltchanov, Y. Koucheryavy and J. Harju, Non-preemptive $\sum$$_i D$-$BMAP_i$/D/1/Kqueuing system modeling the frame transmission process over wireless channels,, in 19th International Teletraffic Congress (ITC19): Performance Challenges for Efficient Next Generation Networks, (2005), 1335.

[9]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).

[10]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).

[11]

J. A. Silvester, N. L. S. Fonseca and S. S. Wang, D-BMAP models for performance evaluation of ATM networks,, in Performance Modelling and Evaluation of ATM Networks, (1995), 325. doi: 10.1007/978-0-387-34881-0_17.

[12]

S. S. Wang and J. A. Silvester, A discrete-time performance model for integrated services in ATM multiplexers,, in Proc. IEEE GLOBECOM, (1993), 757. doi: 10.1109/GLOCOM.1993.318182.

[13]

J.-A. Zhao, B. Li, C.-W. Kok and I. Ahmad, MPEG-4 video transmission over wireless networks: A link level performance study,, Wireless Networks, 10 (2004), 133. doi: 10.1023/B:WINE.0000013078.74259.13.

show all references

References:
[1]

N. Akar, N. C. Oǧuz and K. Sohraby, Matrix-geometric solutions of M/G/1-type Markov chains: A unifying generalized state-space approach,, IEEE Journal on Selected Areas in Communications, 16 (1998), 626. doi: 10.1109/49.700901.

[2]

C. Blondia, A discrete-time batch Markovian arrival process as B-ISDN traffic model,, Belgian J. Oper. Res. Statist. Comput. Sci., 32 (1993), 3.

[3]

C. Blondia and O. Casals, Performance analysis of statistical multiplexing of VBR sources,, Proc. IEEE INFOCOM, (1992), 828. doi: 10.1109/INFCOM.1992.263492.

[4]

C. Blondia and O. Casals, Statistical multiplexing of VBR sources: A matrix-analytic approach,, Performance Evaluation, 16 (1992), 5. doi: 10.1016/0166-5316(92)90064-N.

[5]

M. L. Chaudhry and U. C. Gupta, Queue length distributions at various epochs in discrete-time D-MAP/G/1/N queue and their numerical evaluations,, Information and Management Science, 14 (2003), 67.

[6]

C. Herrmann, The complete analysis of the discrete time finite DBMAP/G/1/N queue,, Performance Evaluation, 43 (2001), 95. doi: 10.1016/S0166-5316(00)00037-7.

[7]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on Statistics and Applied Probability, (1999). doi: 10.1137/1.9780898719734.

[8]

D. Moltchanov, Y. Koucheryavy and J. Harju, Non-preemptive $\sum$$_i D$-$BMAP_i$/D/1/Kqueuing system modeling the frame transmission process over wireless channels,, in 19th International Teletraffic Congress (ITC19): Performance Challenges for Efficient Next Generation Networks, (2005), 1335.

[9]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).

[10]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).

[11]

J. A. Silvester, N. L. S. Fonseca and S. S. Wang, D-BMAP models for performance evaluation of ATM networks,, in Performance Modelling and Evaluation of ATM Networks, (1995), 325. doi: 10.1007/978-0-387-34881-0_17.

[12]

S. S. Wang and J. A. Silvester, A discrete-time performance model for integrated services in ATM multiplexers,, in Proc. IEEE GLOBECOM, (1993), 757. doi: 10.1109/GLOCOM.1993.318182.

[13]

J.-A. Zhao, B. Li, C.-W. Kok and I. Ahmad, MPEG-4 video transmission over wireless networks: A link level performance study,, Wireless Networks, 10 (2004), 133. doi: 10.1023/B:WINE.0000013078.74259.13.

[1]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[2]

Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

[3]

Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197

[4]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[5]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial & Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131

[6]

Gopinath Panda, Veena Goswami. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019007

[7]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[8]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[9]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

[10]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[11]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[12]

Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457

[13]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[14]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[15]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[16]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[17]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[18]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[19]

Abhyudai Singh, Roger M. Nisbet. Variation in risk in single-species discrete-time models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859-875. doi: 10.3934/mbe.2008.5.859

[20]

Sofian De Clercq, Wouter Rogiest, Bart Steyaert, Herwig Bruneel. Stochastic decomposition in discrete-time queues with generalized vacations and applications. Journal of Industrial & Management Optimization, 2012, 8 (4) : 925-938. doi: 10.3934/jimo.2012.8.925

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]