-
Previous Article
Adjustable admission control with threshold in centralized CR networks: Analysis and optimization
- JIMO Home
- This Issue
-
Next Article
A trade-off between time and cost in scheduling repetitive construction projects
Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls
1. | Department of Mathematics, Guizhou University, Guizhou, 550025, China, China |
References:
[1] |
N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems,, Elsevier North Holland, (1981).
|
[2] |
J. P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhauser, (1990).
|
[3] |
V. I. Bogachev, Measure Theory ,, Springer-Verlag, (2007).
doi: 10.1007/978-3-540-34514-5. |
[4] |
J. F. Bonnans and A. Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods,, ESAIM Control Optim. Calc. Var., 14 (2008), 825.
doi: 10.1051/cocv:2008016. |
[5] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences Press, (2007).
|
[6] |
A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlinear optimal control,, SIAM J. Control Optim., 36 (1998), 698.
doi: 10.1137/S0363012996299314. |
[7] |
A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173.
doi: 10.1090/S0025-5718-00-01184-4. |
[8] |
H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem,, Expositiones Mathematicae, 28 (2010), 385.
doi: 10.1016/j.exmath.2010.03.001. |
[9] |
A. Hermant, Stability analysis of optimal control problems with a second-order constraint,, SIAM J. Control Optim., 20 (2009), 104.
doi: 10.1137/070707993. |
[10] |
E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons Inc., (1978).
|
[11] |
X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems,, Birkhauser, (1995).
doi: 10.1007/978-1-4612-4260-4. |
[12] |
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275.
doi: 10.3934/jimo.2014.10.275. |
[13] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constrains: New convergence results,, Numerical Algebra, 2 (2012), 571.
doi: 10.3934/naco.2012.2.571. |
[14] |
R. Loxton, Q. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control,, Automatica, 49 (2013), 2652.
doi: 10.1016/j.automatica.2013.05.027. |
[15] |
W. Rudin, Functional Analysis,, $2^{nd}$ edition. McGraw-Hill, (1991).
|
[16] |
S. Sager, H. G. Bock and G. Reinelt, Direct methods with maximal lower bound for mixed-integer optimal control problems,, Mathematical Programming, 118 (2009), 109.
doi: 10.1007/s10107-007-0185-6. |
[17] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, New York: John Wiley & Sons Inc., (1991).
|
[18] |
S. F. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems,, Optimal Control Applications and Methods, 33 (2012), 576.
doi: 10.1002/oca.1015. |
[19] |
C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503.
doi: 10.1007/s10898-012-9858-7. |
[20] |
J. Yu, Z. X. Liu and D. T. Peng, Existence and stability analysis of optimal control,, Optimal Control Applications and Methods, 35 (2014), 721.
doi: 10.1002/oca.2096. |
[21] |
E. Zeidler, Functional and Its Applications II/B,, Springer-Verlag, (1990). |
show all references
References:
[1] |
N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems,, Elsevier North Holland, (1981).
|
[2] |
J. P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhauser, (1990).
|
[3] |
V. I. Bogachev, Measure Theory ,, Springer-Verlag, (2007).
doi: 10.1007/978-3-540-34514-5. |
[4] |
J. F. Bonnans and A. Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods,, ESAIM Control Optim. Calc. Var., 14 (2008), 825.
doi: 10.1051/cocv:2008016. |
[5] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences Press, (2007).
|
[6] |
A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlinear optimal control,, SIAM J. Control Optim., 36 (1998), 698.
doi: 10.1137/S0363012996299314. |
[7] |
A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173.
doi: 10.1090/S0025-5718-00-01184-4. |
[8] |
H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem,, Expositiones Mathematicae, 28 (2010), 385.
doi: 10.1016/j.exmath.2010.03.001. |
[9] |
A. Hermant, Stability analysis of optimal control problems with a second-order constraint,, SIAM J. Control Optim., 20 (2009), 104.
doi: 10.1137/070707993. |
[10] |
E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons Inc., (1978).
|
[11] |
X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems,, Birkhauser, (1995).
doi: 10.1007/978-1-4612-4260-4. |
[12] |
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275.
doi: 10.3934/jimo.2014.10.275. |
[13] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constrains: New convergence results,, Numerical Algebra, 2 (2012), 571.
doi: 10.3934/naco.2012.2.571. |
[14] |
R. Loxton, Q. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control,, Automatica, 49 (2013), 2652.
doi: 10.1016/j.automatica.2013.05.027. |
[15] |
W. Rudin, Functional Analysis,, $2^{nd}$ edition. McGraw-Hill, (1991).
|
[16] |
S. Sager, H. G. Bock and G. Reinelt, Direct methods with maximal lower bound for mixed-integer optimal control problems,, Mathematical Programming, 118 (2009), 109.
doi: 10.1007/s10107-007-0185-6. |
[17] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, New York: John Wiley & Sons Inc., (1991).
|
[18] |
S. F. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems,, Optimal Control Applications and Methods, 33 (2012), 576.
doi: 10.1002/oca.1015. |
[19] |
C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503.
doi: 10.1007/s10898-012-9858-7. |
[20] |
J. Yu, Z. X. Liu and D. T. Peng, Existence and stability analysis of optimal control,, Optimal Control Applications and Methods, 35 (2014), 721.
doi: 10.1002/oca.2096. |
[21] |
E. Zeidler, Functional and Its Applications II/B,, Springer-Verlag, (1990). |
[1] |
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115 |
[2] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[3] |
Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567 |
[4] |
Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57 |
[5] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[6] |
Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327 |
[7] |
Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1 |
[8] |
Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548 |
[9] |
Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309 |
[10] |
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022 |
[11] |
Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246 |
[12] |
Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435 |
[13] |
Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661 |
[14] |
Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks & Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745 |
[15] |
Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041 |
[16] |
Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673 |
[17] |
Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031 |
[18] |
Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35 |
[19] |
Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019 |
[20] |
Qilin Wang, He Liu, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018051 |
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]